1 NFT

1 nft

nft — Administration tool for packet filtering and classification

Synopsis

nft [-n/--numeric] [-I/--includepathdirectory] [-f/—--filefilenamel|-i/--interactive |l cmd]

nft [-h/--help][-v/—--version]

Description

nft is used to set up, maintain and inspect packet filtering and classification rules in the Linux kernel.

Options
For a full summary of options, run nft --help.

-h/--help Show help message and all options.
-v/--version Show version.

-n/—-—-numeric Numeric output: Addresses and other information that might need network traffic to resolve to symbolic
names are shown numerically (default behaviour). When used twice, internet services are translated. When used twice,
internet services and UIDs/GIDs are also shown numerically. When used three times, protocol numbers are also shown
numerically.

—N Translate IP addresses to DNS names.

—a/--handle Show rule handles in output.

-I/--includepath directory Add the directory directory to the list of directories to by searched for included files.
—f/--file filename Read input from filename.

—-i/--interactive Read input from an interactive readline CLI.

Input file format

Lexical conventions

Input is parsed line-wise. When the last character of a line just before the newline character is a non-quoted backslash (\), the
next line is treated as a continuation. Multiple commands on the same line can be separated using a semicolon (;).

A hash sign (#) begins a comment. All following characters on the same line are ignored.

Identifiers begin with an alphabetic character (a—z, A—-Z), followed zero or more alphanumeric characters (a-z, A-Z, 0-9)
and the characters slash (/), backslash (\), underscore (_) and dot (.). Identifiers using different characters or clashing with a
keyword need to be enclosed in double quotes (").

Include files

include "filename"

Other files can be included by using the include statement. The directories to be searched for include files can be specified using
the -I/--includepath option.

1 NFT

Symbolic variables

define variable = expr
Svariable

Symbolic variables can be defined using the define statement. Variable references are expressions and can be used initialize other
variables. The scope of a definition is the current block and all blocks contained within.

Example 1.1 Using symbolic variables

define int_ifl = ethO
define int_1if2 = ethl
define int_ifs { $int_ifl, $int_if2 }

filter input iif $int_ifs accept

Address families

Address families determine the type of packets which are processed. For each address family the kernel contains so called hooks
at specific stages of the packet processing paths, which invoke nftables if rules for these hooks exist.

ip IPv4 address family.

ip6 IPv6 address family.

inet Internet (IPv4/IPv6) address family.

arp ARP address family, handling packets vi

bridge Bridge address family, handling packets which traverse a bridge device.

netdev Netdev address family, handling packets from ingress.

All nftables objects exist in address family specific namespaces, therefore all identifiers include an address family. If an identifier
is specified without an address family, the ip family is used by default.

IPv4/IPv6/Inet address families

The IPv4/IPv6/Inet address families handle IPv4, IPv6 or both types of packets. They contain five hooks at different packet
processing stages in the network stack.

Hook Description

. All packets entering the system are processed by the prerouting hook. It is invoked before the
prerouting

routing process and is used for early filtering or changing packet attributes that affect routing.

input Packets delivered to the local system are processed by the input hook.
forward Packets forwarded to a different host are processed by the forward hook.
output Packets sent by local processes are processed by the output hook.
postrouting All packets leaving the system are processed by the postrouting hook.

Table 1: IPv4/IPv6/Inet address family hooks

ARP address family

The ARP address family handles ARP packets received and sent by the system. It is commonly used to mangle ARP packets for
clustering.

1 NFT

Hook Description
input Packets delivered to the local system are processed by the input hook.
output Packets send by the local system are processed by the output hook.

Table 2: ARP address family hooks

Bridge address family

The bridge address family handles ethernet packets traversing bridge devices.

Netdev address family

The Netdev address family handles packets from ingress.

Hook Description
ineress All packets entering the system are processed by this hook. It is invoked before layer 3 protocol
£ handlers and it can be used for early filtering and policing.
Table 3: Netdev address family hooks
Tables

add | delete | list | flushtable [family] table

Tables are containers for chains and sets. They are identified by their address family and their name. The address family must be
one of ip, ip6, inet, arp, bridge, netdev. The inet address family is a dummy family which is used to create hybrid
IPv4/IPv6 tables. When no address family is specified, ip is used by default.

add Add a new table for the given family with the given name.
delete Delete the specified table.
list List all chains and rules of the specified table.

f£lush Flush all chains and rules of the specified table.

Chains

addchain [family] table chain hook priority policy device
add | create | delete | list | flushchain [family] table chain
renamechain [family]| table chain newname

Chains are containers for rules. They exist in two kinds, base chains and regular chains. A base chain is an entry point for packets
from the networking stack, a regular chain may be used as jump target and is used for better rule organization.

add Add a new chain in the specified table. When a hook and priority value are specified, the chain is created as a base chain
and hooked up to the networking stack.

create Simlar to the add command, but returns an error if the chain already exists.

delete Delete the specified chain. The chain must not contain any rules or be used as jump target.
rename Rename the specified chain.

list List all rules of the specified chain.

flush Flush all rules of the specified chain.

1 NFT

Rules

[add | insert]rule [family] table chain [position position] statement...
deleterule [family] table chain handle handle

Rules are constructed from two kinds of components according to a set of grammatical rules: expressions and statements.

add Add a new rule described by the list of statements. The rule is appended to the given chain unless a position is specified, in
which case the rule is appended to the rule given by the position.

insert Similar to the add command, but the rule is prepended to the beginning of the chain or before the rule at the given
position.

delete Delete the specified rule.

Expressions

Expressions represent values, either constants like network addresses, port numbers etc. or data gathered from the packet during
ruleset evaluation. Expressions can be combined using binary, logical, relational and other types of expressions to form complex
or relational (match) expressions. They are also used as arguments to certain types of operations, like NAT, packet marking etc.

Each expression has a data type, which determines the size, parsing and representation of symbolic values and type compatibility
with other expressions.

describe command

describe expression

The describe command shows information about the type of an expression and its data type.

Example 1.2 The describe command

S nft describe tcp flags
payload expression, datatype tcp_flag (TICP flag) (basetype bitmask, integer), 8 bits

pre-defined symbolic constants:

fin 0x01
syn 0x02
rst 0x04
psh 0x08
ack 0x10
urg 0x20
ecn 0x40
CwWr 0x80
Data types

Data types determine the size, parsing and representation of symbolic values and type compatibility of expressions. A number
of global data types exist, in addition some expression types define further data types specific to the expression type. Most data
types have a fixed size, some however may have a dynamic size, f.i. the string type.

Types may be derived from lower order types, f.i. the IPv4 address type is derived from the integer type, meaning an IPv4 address
can also be specified as an integer value.

In certain contexts (set and map definitions) it is necessary to explicitly specify a data type. Each type has a name which is used
for this.

1 NFT

Name Keyword Size Base type
Integer integer variable -
Integer type

The integer type is used for numeric values. It may be specified as decimal, hexadecimal or octal number. The integer type
doesn’t have a fixed size, its size is determined by the expression for which it is used.

Bitmask type
Name Keyword Size Base type
Bitmask bitmask variable integer

The bitmask type (bitmask) is used for bitmasks.

String type
Name Keyword Size Base type
String string variable -

The string type is used to for character strings. A string begins with an alphabetic character (a-zA-Z) followed by zero or more
alphanumeric characters or the characters /, —, _ and .. In addition anything enclosed in double quotes (") is recognized as a
string.

Example 1.3 String specification

Interface name
filter input iifname ethO

Weird interface name
filter input iifname " (ethO)"

Link layer address type

The link layer address type is used for link layer addresses. Link layer addresses are specified as a variable amount of groups of
two hexadecimal digits separated using colons (:).

Example 1.4 Link layer address specification

Ethernet destination MAC address
filter input ether daddr 20:¢c9:d0:43:12:d9

IPv4 address type

The IPv4 address type is used for IPv4 addresses. Addresses are specified in either dotted decimal, dotted hexadecimal, dotted
octal, decimal, hexadecimal, octal notation or as a host name. A host name will be resolved using the standard system resolver.

1

NFT

Name Keyword Size Base type
Link layer address lladdr variable integer
Name Keyword Size Base type
IPv4 address ipv4_addr 32 bit integer

Example 1.5 IPv4 address specification

dotted decimal notation

filter output ip daddr 127.0.0.1

host name

filter output ip daddr localhost

IPv6 address type
Name Keyword Size Base type
IPv6 address ipv6_addr 128 bit integer

The IPv6 address type is used for IPv6 addresses. FIXME

Example 1.6 IPv6 address specification

abbreviated loopback address

filter output ip6 daddr

|

Primary expressions

The lowest order expression is a primary expression, representing either a constant or a single datum from a packet’s payload,

meta data or a stateful module.

Meta expressions

meta length | nfproto | 14proto | protocol | priority
[meta] mark | iif | iifname | iiftype | oif | oifname | oiftype | skuid | skgid | nftrace | rtclassid

A meta expression refers to meta data associated with a packet.

There are two types of meta expressions: unqualified and qualified meta expressions. Qualified meta expressions require the
meta keyword before the meta key, unqualified meta expressions can be specified by using the meta key directly or as qualified

meta expressions.

Example 1.7 Using meta expressions

qualified meta expression
filter output meta oif ethO

unqualified meta expression

filter output oif ethO

1

NFT

Keyword Description Type
length Length of the packet in bytes integer (32 bit)
protocol Ethertype protocol value ether_type
priority TC packet priority integer (32 bit)
mark Packet mark packetmark
iif Input interface index iface_index
iifname Input interface name string
iiftype Input interface type iface_type
oif Output interface index iface_index
oifname Output interface name string
oiftype Output interface hardware type iface_type
skuid UID associated with originating uid
socket
. GID associated with originating .
skgid socket gid
rtclassid Routing realm realm
Table 4: Meta expression types
Type Description

iface_index

Interface index (32 bit number). Can be specified
numerically or as name of an existing interface.

ifname Interface name (16 byte string). Does not have to exist.

iface_type Interface type (16 bit number).

uid User ID (32 bit number). Can be specified numerically or
as user name.

sid Group ID (32 bit number). Can be specified numerically or
as group name.
Routing Realm (32 bit number). Can be specified

realm numerically or as symbolic name defined in

/etc/iproute2/rt_realms.

Table 5: Meta expression specific types

1

NFT

Payload expressions

Payload expressions refer to data from the packet’s payload.

Ethernet header expression

ether [ethernet header field]

Keyword Description Type

daddr Destination MAC address ether_addr
saddr Source MAC address ether_addr
type EtherType ether_type

VLAN header expression

vlan [VLAN header field]

Table 6: Ethernet header expression types

Keyword Description Type
id VLAN ID (VID) integer (12 bit)
cfi Canonical Format Indicator flag
pep Priority code point integer (3 bit)
type EtherType ethertype
Table 7: VLAN header expression

ARP header expression

arp [ARP header field]
Keyword Description Type
htype ARP hardware type FIXME
ptype EtherType ethertype
hlen Hardware address len integer (8 bit)
plen Protocol address len integer (8 bit)
op Operation FIXME

IPv4 header expression

ip [IPv4 header field]

IPv6 header expression

ip6 [IPv6 header field]

TCP header expression

tcp [TCP header field]

Table 8: ARP header expression

1

NFT

Keyword Description Type

version IP header version (4) integer (4 bit)

hdrlength IP header length including options integer (4 bit) FIXME scaling

tos Type Of Service FIXME

length Total packet length integer (16 bit)

id IPID integer (16 bit)

frag-off Fragment offset integer (16 bit)

ttl Time to live integer (8 bit)

protocol Upper layer protocol inet_proto

checksum IP header checksum integer (16 bit)

saddr Source address ipv4_addr

daddr Destination address ipv4_addr
Table 9: IPv4 header expression

Keyword Description Type

version IP header version (6) integer (4 bit)

priority

flowlabel Flow label

length Payload length integer (16 bit)

nexthdr Nexthdr protocol inet_proto

hoplimit Hop limit integer (8 bit)

saddr Source address ipv6_addr

daddr Destination address ipv6_addr
Table 10: IPv6 header expression

Keyword Description Type

sport Source port inet_service

dport Destination port inet_service

sequence Sequence number integer (32 bit)

ackseq Acknowledgement number integer (32 bit)

doff Data offset integer (4 bit) FIXME scaling

reserved Reserved area FIXME

flags TCP flags tep_flags

window Window integer (16 bit)

checksum Checksum integer (16 bit)

urgptr Urgent pointer integer (16 bit)

Table 11: TCP header expression

1

NFT

UDP header expression

udp [UDP header field]

Keyword Description Type
sport Source port inet_service
dport Destination port inet_service
length Total packet length integer (16 bit)
checksum Checksum integer (16 bit)
Table 12: UDP header expression

UDP-Lite header expression

udplite [UDP-Lite header field]
Keyword Description Type
sport Source port inet_service
dport Destination port inet_service
cscov Checksum coverage integer (16 bit)
checksum Checksum integer (16 bit)

Table 13: UDP-Lite header expression

SCTP header expression

sctp [SCTP header field]
Keyword Description Type
sport Source port inet_service
dport Destination port inet_service
vtag Verfication Tag integer (32 bit)
checksum Checksum integer (32 bit)

DCCP header expression

dccp [DCCP header field]

Authentication header expression

ah [AH header field]

Table 14: SCTP header expression

Encrypted security payload header expression

esp [ESP header field]

IPcomp header expression

ipcomp [IPComp header field]

1

NFT

Keyword Description Type
sport Source port inet_service
dport Destination port inet_service
Table 15: DCCP header expression
Keyword Description Type
nexthdr Next header protocol inet_service
hdrlength AH Header length integer (8 bit)
reserved Reserved area FIXME
spi Security Parameter Index integer (32 bit)
sequence Sequence number integer (32 bit)
Table 16: AH header expression
bla

IPv6 extension header expressions

IPv6 extension header expressions refer to data from an IPv6 packet’s extension headers.

Conntrack expressions

Conntrack expressions refer to meta data of the connection tracking entry associated with a packet.

ct state | direction | status | mark | expiration | helper | 13proto | saddr | daddr | protocol | proto-src | proto-dst

Statements

Statements represent actions to be performed. They can alter control flow (return, jump to a different chain, accept or drop the
packet) or can perform actions, such as logging, rejecting a packet, etc.

Statements exist in two kinds. Terminal statements unconditionally terminate evaluation of the current rule, non-terminal state-
ments either only conditionally or never terminate evaluation of the current rule, in other words, they are passive from the ruleset
evaluation perspective. There can be an arbitrary amount of non-terminal statements in a rule, but only a single terminal statement

as the final statement.

Verdict statement

The verdict statement alters control flow in the ruleset and issues policy decisions for packets.

accept | drop | queue | continue | return

jump | goto chain

accept Terminate ruleset evaluation and accept the packet.

drop Terminate ruleset evaluation and drop the packet.

Keyword Description Type
spi Security Parameter Index integer (32 bit)
sequence Sequence number integer (32 bit)

Table 17: ESP header expression

1

NFT

Keyword Description Type
nexthdr Next header protocol inet_service
flags Flags FIXME
cfi Compression Parameter Index FIXME
Table 18: IPComp header expression
Keyword Description Type
state State of the connection ct_state
L Direction of the packet relative to the .
direction . ct_dir
connection
status Status of the connection ct_status
mark Connection mark packetmark
expiration Connection expiration time time
helper Helper associated with the connection | string
13proto Layer 3 protocol of the connection nf_proto FIXME
saddr Sour(.:e add.ress .Of the connection for ipv4_addr/ipv6_addr
the given direction
Destinati f th i . .
daddr estmatl'on ad.dress. of the connection ipv4_addr/ipv6_addr
for the given direction
Layer 4 protocol of the connection for | .
protocol . . . net_proto
the given direction
proto-src L.ayer.4 protocol source for the given FIXME
direction
proto-dst Layer 4 protocol destination for the FIXME

given direction

Table 19: Conntrack expressions

1 NFT

queue Terminate ruleset evaluation and queue the packet to userspace.
continue Continue ruleset evaluation with the next rule. FIXME

return Return from the current chain and continue evaluation at the next rule in the last chain. If issued in a base chain, it is
equivalent to accept.

jump chain Continue evaluation at the first rule in chain. The current position in the ruleset is pushed to a call stack and
evaluation will continue there when the new chain is entirely evaluated of a return verdict is issued.

goto chain Similar to jump, but the current position is not pushed to the call stack, meaning that after the new chain evalua-
tion will continue at the last chain instead of the one containing the goto statement.

Example 1.8 Verdict statements

process packets from ethO and the internal network in from_lan
chain, drop all packets from eth0O with different source addresses.

filter input iif ethO ip saddr 192.168.0.0/24 jump from_lan
filter input iif ethO drop

Log statement
Reject statement
Counter statement
Meta statement
Limit statement
NAT statement

Queue statement

Additional commands

These are some additional commands included in nft.

export

Export your current ruleset in XML or JSON format to stdout.
Examples:

nft export xml
-1
nft export Jjson

-1

[
[

monitor

The monitor command allows you to listen to Netlink events produced by the nf_tables subsystem, related to creation and deletion
of objects. When they ocurr, nft will print to stdout the monitored events in either XML, JSON or native nft format.

To filter events related to a concrete object, use one of the keywords ’tables’, ’chains’, ’sets’, ‘rules’, ’elements’.
To filter events related to a concrete action, use keyword 'new’ or ’destroy’.

Hit “C to finish the monitor operation.

1 NFT

Example 1.9 Listen to all events, report in native nft format

% nft monitor

Example 1.10 Listen to added tables, report in XML format

% nft monitor new tables xml

Example 1.11 Listen to deleted rules, report in JSON format

% nft monitor destroy rules json

Example 1.12 Listen to both new and destroyed chains, in native nft format

)

% nft monitor chains

Error reporting

When an error is detected, nft shows the line(s) containing the error, the position of the erroneous parts in the input stream and
marks up the erroneous parts using carrets (). If the error results from the combination of two expressions or statements, the
part imposing the constraints which are violated is marked using tildes (~).

For errors returned by the kernel, nft can’t detect which parts of the input caused the error and the entire command is marked.

Example 1.13 Error caused by single incorrect expression

<cmdline>:1:19-22: Error: Interface does not exist
filter output oif ethO

AAAA

Example 1.14 Error caused by invalid combination of two expressions

<cmdline>:1:28-36: Error: Right hand side of relational expression (==) must be constant
filter output tcp dport == tcp dport

AAAAAAAAA

Example 1.15 Error returned by the kernel

<cmdline>:0:0-23: Error: Could not process rule: Operation not permitted
filter output oif wlanO

AAAAAAAAAAAAAAAAAAAAANANA

Exit status

On success, nft exits with a status of 0. Unspecified errors cause it to exit with a status of 1, memory allocation errors with a
status of 2, unable to open Netlink socket with 3.

See Also

iptables(8), ip6tables(8), arptables(8), ebtables(8), ip(8), tc(8)
There is an official wiki at: http://wiki.nftables.org

1 NFT

Authors

nftables was written by Patrick McHardy.

Copyright

Copyright © 2008-2014 Patrick McHardy kaber @trash.net

nftables is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2
as published by the Free Software Foundation.

This documentation is licenced under the terms of the Creative Commons Attribution-ShareAlike 4.0 license, CC BY-SA 4.0.

mailto:kaber@trash.net
http://creativecommons.org/licenses/by-sa/4.0/

	nft

