MGL script language

for version 2.1.3

A.A. Balakin (http://mathgl.sourceforge.net/)



http://mathgl.sourceforge.net/

This manual is for MathGL (version 2.1.3), a collection of classes and routines for scientific
plotting. Please report any errors in this manual to mathgl.abalakin@gmail.org.

Copyright (©) 2008-2012 Alexey A. Balakin.

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License.”


mailto:mathgl.abalakin@gmail.org

Table of Contents

1 MGL scripts........oooiii 1
1.1 MGL definition .......oviieiii e 1
1.2 Program flow commands ..............coiiiiiiiiiii 2

2 Generalconcepts ........................ ... 4
2.1 Coordinate aXeS. ... ...uu ettt 4
2.2 Color SEYLEs . oot 5
2.3 Line styles ... 5
2.4 Color scheme. ... 6
2.5 Font styles ... ... e 8
2.6 Textual formulas........... ..o 9
2.7 Command OptionS. ... ..ottt 10
2.8 Interfaces . .......ooiiiiiii i 11

3 MathGLcore....................iiiiiiiii... 12
3.1 Create and delete objects ... 12
3.2 Graphics Setup ... ..ottt 12

3.2. 1 TranSPar€nCy ... ..evonuutte et 12
3.2.2 Lighting .....oooii i 13
32,3 BOg o 13
3.2.4 Default sizes ... ..o 13
3.25  CUbbIng . vttt e 14
3.2.6 Font settings........cooiiiiiii i 14
3.2.7 Palette and colors.............ooiiiiiiiii 15
3.2.8 Error handling ......... ... . i 15
3.3 AXIS SettingS. ...t 15
3.3.1 Ranges (bounding box)...............ooiiiiiiii. 15
3.3.2 Curved coordinates. ..........o.ueiiiiiiieiiiii i 16
3.3.3  THCKS « ettt 17
3.4 Subplots and rotation......... .. ... i 18
3.5 Export picture........ .o 20
3.5.1 Exporttofile........oooi 20
3.5.2 Frames/Animation............... ... ... oo 21
3.5.3 Bitmap in memory...........coiiiiiiiii 21
3.5.4 Parallelization.......... ... . 21
3.6 Primitives ... 21
3.7 Text printing . ... 23
3.8 Axisand Colorbar ... 24
3.9 Legend......ooouiiiii e 25
310 1D plotting .. ..oouu i 26
311 2D plotting .. ..ovnn i 30

3.12 3D plotting . ..ot 33



3.13 Dual plotting . .....ooi 35
3.14 Vector fields .. ..o 37
3.15 Other plotting ...... ..o 39
3.16  Nonlinear fitting ..........cco i 41
3.17 Data manipulation........... ... o i 42
Data processing................................ 44
4.1 Public variables. ... 44
4.2 Data constructor. ... ... 44
4.3 Data resizing. ... .o 44
4.4 Data filling . ... 45
45 File I/O oo 47
4.6 Make another data.......... ..o i 48
4.7 Data changing ........ ..o 49
4.8 Interpolation........ ..o 51
4.9 Data information......... ... ... o 51
410 OPEratorS. . oot ettt et e e 52
4.11 Global functions ........ ..o 53
4.12 Evaluate eXpression . ........c.oouuiiiiiiiiiiii i 54
4.13 MGL variables. ... e 55
MathGL examples............................. 56
0.1 Basicusage ...... ..o 56
5.2 Advanced USAZE . .. ...ttt 57
5.2.1 Subplots ... 57
5.2.2 Axisand ticks.........o. i 59
5.2.3 Curvilinear coordinates.............. ..o, 63
5.2.4 Colorbars . ..o 64
5.2.0 Bounding box.......... i 65
5.2.6 Ternary axis .......ooutitiii e 66
5.2.7 Text features. ... .o 67
5.2.8 Legend sample ... 69
5.2.9 Cutting sample. ... 70
5.3 Datahandling ....... ... i 71
5.3.1 Array creation ... 71
5.3.2 Change data ...... ..o 72
5.4 Data plotting ..... ..o 76
5.5 1D samples ... 78
5.5.1 Plot sample.... ..o 78
5.5.2 Radarsample....... ..o 79
5.5.3 Stepsample. ... ... 80
5.5.4 Tens sample. . ....oou i 81
5.5.5 Areasample.......... . 82
5.5.6 Regionsample ....... ..o 83
5.5.7 Stem sample ... .. .. 84
5.5.8 Barssample.......... 85
5.5.9 Barhsample....... .o i 86

5.5.10 Cones sample . ... 87

ii



5.5.11 Chart sample ... 88
5.5.12 BoxPlot sample..........cooiiiiiiii 89
5.5.13 Candle sample ... 90
5.5.14 Error sample. ... ... 90
5.5.15 Mark sample. ... 91
5.5.16 TextMark sample .......... ..o, 92
5.5.17 Label sample...... ... i 93
5.5.18 Table sample. ... 93
5.5.19 Tubesample...... ... 94
5.5.20 Tapesample..... ..o 95
5.5.21 Torus sample ........ouiiiiiiiii 96
5.6 2D samples .. ... 97
5.6.1 Surfsample.......... i 97
5.6.2 SurfCsample. ... 98
5.6.3 SurfA sample ... 99
5.6.4 Mesh sample. ... 100
5.6.5 Fallsample ... 100
5.6.6 Beltsample........ oo 101
5.6.7 Boxssample ...... ... 102
5.6.8 Tilesample ..... ..o 102
5.6.9 TileS sample. ... .o 103
5.6.10 Denssample...... ..o 103
5.6.11 Cont sample ....... ..o 104
5.6.12 ContF sample..........oo i 105
5.6.13 ContD sample ...t 106
5.6.14 ContV sample ...t 107
5.6.15 Axial sample. ... 108
5.6.16 Grad sample...... ... 109
5.7 3D samples . ....ooi 109
5.7.1 Surf3sample. ... ..o 110
5.7.2 Surf3C sample ... 110
5.7.3 Surf3A sample ..... ..o 111
5.74 Cloud sample ... e 112
5.7.5 Densd sample......coouuiiiiii i 113
5.76 Cont3 sample .......oouiiiiii e 114
5.7.7 ContF3 sample. ... 114
5.7.8 Dens projection sample..............oooiiiiiiiiiii 115
5.7.9 Cont projection sample. ..., 116
5.7.10 ContF projection sample........... ... L. 116
5.7.11 TriPlot and QuadPlot.................................. 117
5.712 Dotssample ..o 118
5.8 Vector field samples. ... 119
5.8.1 Vect sample. ... ..o 120
5.82 Vectd sample...... ..o 121
5.83 Trajsample. ... 121
5.84 Flow sample ... 122
5.85 Pipesample. ... 123
5.86 Dewsample.... ... 124

iii



5.9 Hints ..o 125
5.9.1 “Compound” graphics...........c.coviiiiiiiiiinennnn... 125
5.9.2 Transparency and lighting............................... 126
5.9.3 Types of transparency............covviieiiiiieenne... 127
5.9.4  Axis projection. ...... ... 129
5.9.5 Adding fog. .. oot 130
5.9.6 Several light sources.......... ..., 131
5.9.7 Using primitives ... 131
5.9.8 STFA sample ... ... 134
5.9.9 Mapping visualization................ ... 135
5.9.10 Making histogram........... ... .t 136
5.9.11 Nonlinear fitting hints............ ... ... .. .. ... 137
5.9.12 PDE solving hints.......... ..o i 138
5.9.13 MGL parser using. ........ccouvuiiiiiiiiiiiiii.. 141
5.9.14 Using options . .... oo 142
5.9.15 “Templates” ... ..o 143
5.9.16 Stereo Image.........oviuiii i 144
5.9.17 Reduce memory usage ...........c.ouuiiiiiiiiiiiiiii... 144

B.A0  FAQ . 145

Appendix A Symbols and hot-keys........... 147

A1l Symbols for styles. ... 147

A.2 Hot-keys for mglview ......... .. ..o i 152

A3 Hot-keys for UDAV ... ... 153

Appendix B  GNU Free Documentation License

........................................... 157

iv



Chapter 1: MGL scripts 1

1 MGL scripts

MathGL library supports the simplest scripts for data handling and plotting. These scripts
can be used independently (with the help of UDAV, mglconv, mglview programs and others

1.1 MGL definition

MGL script language is rather simple. Each string is a command. First word of string is the
name of command. Other words are command arguments. Command may have up to 1000
arguments (at least for now). Words are separated from each other by space or tabulation
symbol. The upper or lower case of words is important, i.e. variables a and A are different
variables. Symbol ‘# starts the comment (all characters after # will be ignored). The
exception is situation when ‘#’ is a part of some string. Also options can be specified after
symbol “;’ (see Section 2.7 [Command options|, page 10). Symbol ‘:’ starts new command
(like new line character) if it is not placed inside a string or inside brackets.

If string contain references to external parameters (substrings ‘$0’, ‘¢1” ... ‘$9’) or defini-
tions (substrings ‘$a’; ‘$b’ ... ‘$z’) then before execution the values of parameter/definition
will be substituted instead of reference. It allows to use the same MGL script for different
parameters (filenames, paths, condition and so on).

Argument can be a string, a variable (data arrays) or a number (scalars).

e The string is any symbols between ordinary marks ‘>’. Long strings can be concatenated
from several lines by ‘\’ symbol. I.e. the string ‘>a +’\<br>’ b’’ will give string ‘’a +
b’’ (here ‘<br>’ is newline). Also you can concatenate strings and numbers using °,’
with out spaces (for example, ‘’max(u)=’,u.max,’ a.u.”’).

e Usually variable have a name which is arbitrary combination of symbols (except spaces
and *?’) started from a letter and with length less than 64. A temporary array can be
used as variable:

e sub-arrays (like in [subdatal, page 48 command) as command argument. For
example, a(1) or a(1,:) or a(1,:,:) is second row, a(:,2) or a(:,2,:) is third
column, a(:,:,0) is first slice and so on. Also you can extract a part of array
from m-th to n-th element by code a(m:n,:,:) or just a(m:n).

e any column combinations defined by formulas, like a(’n*w~2/exp(t)’) if names
for data columns was specified (by [idset], page 47 command or in the file at string
started with ##).

e any expression (without spaces) of existed variables produce temporary variable.
For example, ‘sqrt(dat(:,5)+1)’ will produce temporary variable with data val-
ues equal to tmp[i,j] = sqrt(dat[i,5,jl+1).

e temporary variable of higher dimensions by help of []. For example, ‘[1,2,3]’
will produce a temporary vector of 3 elements {1, 2, 3}; ‘[[11,12],[21,22]]’
will produce matrix 2*2 and so on. Here you can join even an arrays of the same
dimensions by construction like ‘[v1,v2,...,vn]’ .

e result of code for making new data (see Section 4.6 [Make another datal, page 48)
inside {}. For example, ‘{sum dat ’x’}’ produce temporary variable which contain
result of summation of dat along direction 'x’. This is the same array tmp as
produced by command ‘sum tmp dat ’x’’. You can use nested constructions, like
‘{sum {max dat ’z’} ’x’}.



Chapter 1: MGL scripts 2

Temporary variables can not be used as 1st argument for commands which create
(return) the data (like ‘new’, ‘read’, ‘hist’ and so on).

e Special names nan=#QNAN, pi=3.1415926..., on=1, off=0, :=-1 are treated as num-
ber if they were not redefined by user. Variables with suffixes are treated as numbers
(see Section 4.9 [Data information|, page 51). Names defined by [define], page 2 com-
mand are treated as number. Also results of formulas with sizes 1x1x1 are treated as
number (for example, ‘pi/dat.nx’).

Before the first using all variables must be defined with the help of commands, like,
[new|, page 44, [var], page 46, [list], page 45, [copy], page 44, [read], page 47, [hist], page 49,
[sum], page 49 and so on (see sections Section 4.2 [Data constructor|, page 44, Section 4.4
[Data filling], page 45 and Section 4.6 [Make another datal, page 48).

Command may have several set of possible arguments (for example, plot ydat and
plot xdat ydat). All command arguments for a selected set must be specified. However,
some arguments can have default values. These argument are printed in [], like text ydat
[’stl’="’] or text x y ’txt’ [’fnt’=’’ size=-1]. At this, the record [argl arg2 arg3
...] means [argl [arg2 [arg3 ...]]], i.e. you can omit only tailing arguments if you
agree with its default values. For example, text x y >txt’ >’ 1 or text xy *txt’ ’’ is
correct, but text x y *txt’ 1 is incorrect (argument ’>fnt’ is missed).

1.2 Program flow commands

Below I show commands to control program flow, like, conditions, loops, define script ar-
guments and so on. Other commands can be found in chapters Chapter 3 [MathGL core],
page 12 and Chapter 4 [Data processing|, page 44. Note, that some of program flow com-
mands (like [define], page 2, [ask], page 2, [call], page 3, [for]|, page 3, [func|, page 3) should
be placed alone in the string.

chdir ’path’ [MGL command]
Changes the current directory to path.

ask $N ’question’ [MGL command]
Sets N-th script argument to answer which give the user on the question. Usually
this show dialog with question where user can enter some text as answer. Here N is
digit (0...9) or alpha (a...z).

define $N smth [MGL command]
Sets N-th script argument to smth. Note, that smth is used as is (with >’ symbols if
present). Here N is digit (0...9) or alpha (a...z).

define name smth [MGL command]
Create scalar variable name which have the numeric value of smth. Later you can use
this variable as usual number. Here N is digit (0...9) or alpha (a...z).

defchr $N smth [MGL command]
Sets N-th script argument to character with value evaluated from smth. Here N is
digit (0...9) or alpha (a...z).

defnum $N smth [MGL command]
Sets N-th script argument to number with value evaluated from smth. Here N is digit
(0...9) or alpha (a...z).



Chapter 1: MGL scripts 3

defpal $N smth [MGL command]
Sets N-th script argument to palette character at position evaluated from smth. Here
N is digit (0...9) or alpha (a...z).

call ’fname’ [ARG1 ARG?2 ... ARGY [MGL command]
Executes function fname (or script if function is not found). Optional arguments will
be passed to functions. See also [func]|, page 3.

func ’fname’ [narg=0] [MGL command]
Define the function fname and number of required arguments. The arguments will
be placed in script parameters $1, $2, ... $9. Note, you should stop script execution

before function definition(s) by command [stop], page 3. See also [return], page 3.

return [MGL command]
Return from the function. See also [func|, page 3.

if dat 'cond’ [MGL command]
Starts block which will be executed if dat satisfy to cond.

if val [MGL command]
Starts block which will be executed if val is nonzero.

elseif dat 'cond’ [MGL command]
Starts block which will be executed if previous if or elseif is false and dat satisfy
to cond.

elseif val [MGL command]

Starts block which will be executed if previous if or elseif is false and val is nonzero.

else [MGL command]
Starts block which will be executed if previous if or elseif is false.

endif [MGL command]
Finishes if/elseif/else block.

for $N v1 v2 [dv=1] [MGL command]
Starts cycle with $N-th argument changing from v1 to v2 with the step dv. Here N
is digit (0...9) or alpha (a...z).

for $N dat [MGL command]
Starts cycle with $N-th argument changing for dat values. Here N is digit (0...9) or
alpha (a...z).

next [MGL command]

Finishes for cycle.

once val [MGL command]
The code between once on and once off will be executed only once. Useful for large
data manipulation in programs like UDAV.

stop [MGL command]
Terminate execution.



Chapter 2: General concepts 4

2 (eneral concepts

The set of MathGL features is rather rich — just the number of basic graphics types is larger
than 50. Also there are functions for data handling, plot setup and so on. In spite of it 1
tried to keep a similar style in function names and in the order of arguments. Mostly it is
used for different drawing functions.

There are six most general (base) concepts:

1. Any picture is created in memory first. The internal (memory) representation can
be different: bitmap picture (for SetQuality(MGL_DRAW_LMEM)) or the list of vector
primitives (default). After that the user may decide what he/she want: save to file,
display on the screen, run animation, do additional editing and so on. This approach
assures a high portability of the program — the source code will produce exactly the
same picture in any OS. Another big positive consequence is the ability to create the
picture in the console program (using command line, without creating a window)!

2. Every plot settings (style of lines, font, color scheme) are specified by a string. It
provides convenience for user/programmer — short string with parameters is more com-
prehensible than a large set of parameters. Also it provides portability — the strings
are the same in any OS so that it is not necessary to think about argument types.

3. All functions have “simplified” and “advanced” forms. It is done for user’s convenience.
One needs to specify only one data array in the “simplified” form in order to see the
result. But one may set parametric dependence of coordinates and produce rather
complex curves and surfaces in the “advanced” form. In both cases the order of function
arguments is the same: first data arrays, second the string with style, and later string
with options for additional plot tuning.

4. All data arrays for plotting are encapsulated in mglData(A) class. This reduces the
number of errors while working with memory and provides a uniform interface for data
of different types (mreal, double and so on) or for formula plotting.

5. All plots are vector plots. The MathGL library is intended for handling scientific
data which have vector nature (lines, faces, matrices and so on). As a result, vector
representation is used in all cases! In addition, the vector representation allows one to
scale the plot easily — change the canvas size by a factor of 2, and the picture will be
proportionally scaled.

6. New drawing never clears things drawn already. This, in some sense, unexpected, idea
allows to create a lot of “combined” graphics. For example, to make a surface with con-
tour lines one needs to call the function for surface plotting and the function for contour
lines plotting (in any order). Thus the special functions for making this “combined”
plots (as it is done in Matlab and some other plotting systems) are superfluous.

In addition to the general concepts I want to comment on some non-trivial or less com-
monly used general ideas — plot positioning, axis specification and curvilinear coordinates,
styles for lines, text and color scheme.

2.1 Coordinate axes

Two axis representations are used in MathGL. The first one consists of normalizing co-
ordinates of data points in a box MinxMax (see Section 3.3 [Axis settings], page 15). If

9



Chapter 2: General concepts 5

SetCut () is true then the outlier points are omitted, otherwise they are projected to the
bounding box (see Section 3.2.5 [Cutting], page 14). Also, the point will be omitted if it lies
inside the box defined by SetCutBox () or if the value of formula Cut0£ff () is nonzero for
its coordinates. After that, transformation formulas defined by SetFunc() or SetCoor ()
are applied to the data point (see Section 3.3.2 [Curved coordinates|, page 16). Finally, the
data point is plotted by one of the functions.

The range of z, y, zaxis can be specified by SetRange () or SetRanges() functions. Its
origin is specified by SetOrigin() function. At this you can you can use NAN values for
selecting axis origin automatically.

There is 4-th axis ¢ (color axis or colorbar) in addition to the usual axes z, y, z. It sets
the range of values for the surface coloring. Its borders are automatically set to values of
Min.z, Max.z during the call of SetRanges() function. Also, one can directly set it by call
SetRange(’c’, ...). Use Colorbar() function for drawing the colorbar.

The form (appearence) of tick labels is controlled by SetTicks() function (see
Section 3.3.3 [Ticks|, page 17). Function SetTuneTicks switches on/off tick enhancing
by factoring out acommon multiplier (for small coordinate values, like 0.001 to 0.002, or
large, like from 1000 to 2000) or common component (for narrow range, like from 0.999
to 1.000). Finally, you may use functions SetTickTempl() for setting templates for tick
labels (it supports TeX symbols). Also, there is a possibility to print arbitrary text as tick
labels the by help of SetTicksVal() function.

2.2 Color styles

Base colors are defined by one of symbol ‘wkrgbcymhRGBCYMHWlenupqLENUPQ’. The color
types are: ‘k’ — black, ‘r’ —red, ‘R’ — dark red, ‘g’ — green, ‘G’ — dark green, ‘b’ — blue, ‘B’ —
dark blue, ‘c’ — cyan, ‘C’ — dark cyan, ‘m’ — magenta, ‘M’ — dark magenta, ‘y’ — yellow, ‘Y’ —
dark yellow (gold), ‘b’ — gray, ‘H’ — dark gray, ‘w’ — white, ‘W’ — bright gray, ‘1’ — green-blue,
‘L’ — dark green-blue, ‘e’ — green-yellow, ‘E’ — dark green-yellow, ‘n’ — sky-blue, ‘N’ — dark
sky-blue, ‘u’ — blue-violet, ‘U’ — dark blue-violet, ‘p’ — purple, ‘P’ — dark purple, ‘q’ — orange,
‘Q — dark orange (brown).

You can also use “bright” colors. The “bright” color contain 2 symbols in brackets
‘{cN}’: first one is the usual symbol for color id, the second one is a digit for its brightness.
The digit can be in range ‘1’...‘9’. Number ‘56’ corresponds to a normal color, ‘1’ is a very
dark version of the color (practically black), and ‘9’ is a very bright version of the color
(practically white). For example, the colors can be ‘{b2}’ ‘{b7}’ ‘{r7}’ and so on.

Finally, you can specify RGB or RGBA values of a color using format ‘{xRRGGBB}’ or
‘{xRRGGBBAA}’ correspondingly. For example, ‘{xFF9966}’ give you melone color.

2.3 Line styles

The line style is defined by the string which may contain specifications for color
(‘wkrgbcymhRGBCYMHW1enupqLENUPQ’), dashing style (‘-|;:ji=" or space), width
(‘123456789’) and marks (‘ko+xsd.”v<>’ and ‘#’ modifier). If one of the type of
information is omitted then default values used with next color from palette (see
Section 3.2.7 [Palette and colors], page 15). Note, that internal color counter will be
nullified by any change of palette. This includes even hidden change (for example, by
Box () or Axis() functions). By default palette contain following colors: dark gray ‘H’, blue



Chapter 2: General concepts 6

‘v’, green ‘g’, red ‘r’, cyan ‘c’, magenta ‘m’, yellow ‘y’, gray ‘h’, blue-green ‘1’, sky-blue ‘n’,
orange ‘q’, yellow-green ‘e’, blue-violet ‘u’, purple ‘p’.

Dashing style has the following meaning: space — no line (usable for plotting
only marks), ‘=’ — solid line (H#HH#HHHHH#HHHFHHFHHHH#H#), ‘I’ — long dashed line
(RIS ), 57 — dashed line (#### _ ###4# ), =" - small dashed

line (##H#__H#H#H__#H#__#H#__), ‘27 — dotted line (H#___#___#___#___), ‘37 — dash-dotted
line (H#H#HH#HH#H____#____), ‘1’ — small dash-dotted line (H#H#H#__#__H#HH#__#__).

[P

Marker types are: ‘o’ — circle, ‘+’ — cross, ‘x’ — skew cross, ‘s’ - square, ‘d’ - rhomb (or
diamond), ‘.” — dot (point), ‘~’ — triangle up, ‘v’ — triangle down, ‘<’ — triangle left, >" —
triangle right, ‘#*’ — Y sign, ‘#+’ — squared cross, ‘#x’ — squared skew cross, ‘#.’ — circled
dot. If string contain symbol ‘#’ then the solid versions of markers are used.

One may specify to draw a special symbol (an arrow) at the beginning and at the end
of line. This is done if the specification string contains one of the following symbols: ‘A’
— outer arrow, ‘V’ — inner arrow, ‘I’ — transverse hatches, ‘K’ — arrow with hatches, ‘T’ —
triangle, ‘S’ — square, ‘D’ — rhombus, ‘0’ — circle, ‘_’ — nothing (the default). The following
rule applies: the first symbol specifies the arrow at the end of line, the second specifies the
arrow at the beginning of the line. For example, ‘r-A’ defines a red solid line with usual
arrow at the end, ‘b|AI’ defines a blue dash line with an arrow at the end and with hatches
at the beginning, ‘_0’ defines a line with the current style and with a circle at the beginning.
These styles are applicable during the graphics plotting as well (for example, Section 3.10

[1D plotting], page 26).

DA B
cow e By Solid ' ., Style'AA' , Style'A"or'A
o a . StleVV « Style 'V or 'V_!
o E - LowDuhy W Style KK, Style'’K or’E
" o Dash —— Style T’ — StyleTor T
o g o= g , w +SgleDD' ___, SgleD'orD
e R e wd oo+ Small dash '= . a Style'SS' ____ Style'Sar'S_’
o W e .~ - Dashdot§ e« Sl'00'  ___, Style'0'or'0
o . — SyleTT  ___, Style T or'T”
a AT a4 g Small dash-dot '{' Style'_* __ Style’'ormone
N e Y Dots < Style'VA' ., Style'AS'
4 e 4 Yo Nona ! —» Style'AV' o Style' A
Pt e

NuEvag-Jae

EE

2.4 Color scheme

The color scheme is used for determining the color of surfaces, isolines, isosurfaces and
so on. The color scheme is defined by the string, which may contain several characters
that are color id (see Section 2.3 [Line styles|, page 5) or characters ‘#:|’. Symbol ‘#’



Chapter 2: General concepts 7

switches to mesh drawing or to a wire plot. Symbol ‘|’ disables color interpolation in color
scheme, which can be useful, for example, for sharp colors during matrix plotting. Symbol
‘:” terminate the color scheme parsing. Following it, the user may put styles for the text,
rotation axis for curves/isocontours, and so on. Color scheme may contain up to 32 color

values.

The final color is a linear interpolation of color array. The color array is constructed
from the string ids (including “bright” colors, see Section 2.2 [Color styles|, page 5). The
argument is the amplitude normalized between Cmin — Cmax (see Section 3.3 [Axis settings],
page 15). For example, string containing 4 characters ‘bcyr’ corresponds to a colorbar from
blue (lowest value) through cyan (next value) through yellow (next value) to the red (highest
value). String ‘kw’ corresponds to a colorbar from black (lowest value) to white (highest
value). String ‘m’ corresponds to a simple magenta color.

There are several useful combinations. String ‘kw’ corresponds to the simplest gray color
scheme where higher values are brighter. String ‘wk’ presents the inverse gray color scheme
where higher value is darker. Strings ‘kRryw’, ‘kGgw’, ‘kBbcw’ present the well-known hot,
summer and winter color schemes. Strings ‘BbwrR’ and ‘bBkRr’ allow to view bi-color figure
on white or black background, where negative values are blue and positive values are red.
String ‘BbcyrR’ gives a color scheme similar to the well-known jet color scheme.

For more precise coloring, you can change default (equidistant) position of colors in color
scheme. The format is ‘{CN,pos}’, ‘{CN,pos} or ‘{xRRGGBB,pos}’. The position value pos
should be in range [0, 1]. Note, that alternative method for fine tuning of the color scheme
is using the formula for coloring (see Section 3.3.2 [Curved coordinates|, page 16).

o' Wk s
xHCew' NN Bbew' NN
'kRryw' _ 'kGgew' _

Bowk' HE Tl v R T
'GgwmM' - - "UuwgR' - -
Qqwee' IR M cowyy B |
bewyr' . A e IR |
BoeyR' R S Ubcyqr' R -
BoewyR [P - . I S
BoeyRl' [ T v 03

When coloring by coordinate (used in [map], page 36), the final color is determined by
the position of the point in 3d space and is calculated from formula c=x*c[1] + y*c[2].
Here, c[1], c[2] are the first two elements of color array; x, y are normalized to axis range
coordinates of the point.



Chapter 2: General concepts 8

2.5 Font styles

Text style is specified by the string which may contain: color id characters

‘wkrgbcymhRGBCYMHW’ (see Section 2.2 [Color styles|, page 5), and font style (‘ribwou’)

and/or alignment (‘LRC’) specifications. At this, font style and alignment begin after the
[

separator ‘:’. For example, ‘r:iCb’ sets the bold (‘b’) italic (‘i’) font text aligned at the
center (‘C’) and with red color (‘r’).

The font styles are: ‘r’ — roman (or regular) font, ‘i’ — italic style, ‘©’ — bold style.
By default roman roman font is used. The align types are: ‘L’ — align left (default), ‘C’ —
align center, ‘R’ — align right. Additional font effects are: ‘w’ — wired, ‘o’ — over-lined, ‘u’ —
underlined.

Also a parsing of the LaTeX-like syntax is provided. There are commands for the font
style changing inside the string (for example, use \b for bold font): \a or \overline — over-
lined, \b or \textbf — bold, \i or \textit — italic, \r or \textrm — roman (disable bold and
italic attributes), \u or \underline — underlined, \w or \wire — wired, \big — bigger size, @
— smaller size. The lower and upper indexes are specified by ‘_" and ‘~’ symbols. At this
the changed font style is applied only on next symbol or symbols in braces {}. The text
in braces {} are treated as single symbol that allow one to print the index of index. For
example, compare the strings ‘sin (x"{273})’ and ‘sin (x7273)’. You may also change
text color inside string by command #7 or by \color? where ‘?’ is symbolic id of the color
(see Section 2.2 [Color styles], page 5). For example, words ‘blue’ and ‘red’ will be colored
in the string ‘#b{blue} and \colorr{red} text’. The most of functions understand the
newline symbol ‘\n’ and allows to print multi-line text. Finally, you can use arbitrary (if
it was defined in font-face) UTF codes by command \utf0x??7?. For example, \utf0x3b1
will produce a symbol.

The most of commands for special TeX or AMSTeX symbols, the commands for font
style changing (\textrm, \textbf, \textit, \textsc, \overline, \underline), accents (\hat,
\tilde, \dot, \ddot, \acute, \check, \grave, \bar, \breve) and roots (\sqrt, \sqrt3, \sqrt4)
are recognized. The full list contain approximately 2000 commands. Note that first space
symbol after the command is ignored, but second one is printed as normal symbol (space).
For example, the following strings produce the same result a: ‘\tilde{a}’; ‘\tilde a’;
‘\tilde{}a’.

In particular, the Greek letters are recognizable special symbols: « — \alpha, § — \beta,
~ — \gamma, § — \delta, € — \epsilon, n — \eta, « — \iota, x — \chi, x — \kappa, A — \lambda,
p— \mu, v — \nu, o — \o, w — \omega, ¢ — \phi, 7 — \pi, ¢ — \psi, p — \rho, ¢ — \sigma,
0 — \theta, 7 — \tau, v — \upsilon, £ — \xi, { — \zeta, ¢ — \varsigma, € — \varepsilon, 9 —
\vartheta, ¢ — \varphi, A — \Alpha, B — \Beta, I' — \Gamma, A — \Delta, E — \Epsilon,
H - \Eta, I — \Iota, C — \Chi, K — \Kappa, A — \Lambda, M — \Mu, N — \Nu, O - \O, Q
— \Omega, & — \Phi, IT — \Pi, ¥ — \Psi, R — \Rho, > — \Sigma, © — \Theta, T — \Tau, T
— \Upsilon, = — \Xi, Z — \Zeta.

The small part of most common special TeX symbols are: / — \angle, N — \aleph, - —
\cdot, & — \clubsuit, U — \cup, N — \cap, ¢ — \diamondsuit, ¢ — \diamond, + — \div, | —
\downarrow, t — \dag, I — \ddag, = — \equiv, 3 — \exists, —~ — \frown, b — \flat, > — \ge,
> —\geq, + — \gets, © — \heartsuit, co — \infty, € — \in, [ — \int, & — \Im, ( — \langle, <
—\le, < —\leq, + — \leftarrow, F — \mp, V — \nabla, # — \ne, # — \neq, § — \natural, § —
\oint, ® — \odot, @& — \oplus, d — \partial, || — \parallel, L — \perp, + — \pm, x — \propto,



Chapter 2: General concepts 9

[T — \prod, ® — \Re, — — \rightarrow, ) — \rangle, # — \spadesuit, ~ — \sim, — — \smile,
C — \subset, D — \supset, \/ — \sqrt or \surd, § — \S, # — \sharp, > — \sum, x — \times,
— — \to, T — \uparrow, o — \wp and so on.

The font size can be defined explicitly (if size>0) or relatively to a base font size
as |size|*FontSize (if size<0). The value size=0 specifies that the string will not be
printed. The base font size is measured in internal “MathGL” units. Special functions
SetFontSizePT(), SetFontSizeCM(), SetFontSizeIN() (see Section 3.2.6 [Font settings],
page 14) allow one to set it in more “common” variables for a given dpi value of the picture.

2.6 Textual formulas

MathGL have the fast variant of textual formula evaluation . There are a lot of functions and

operators available. The operators are: ‘+’ — addition, ‘=’ — subtraction, ‘*’ — multiplication,
¢/’ — division, ‘~’ — integer power. Also there are logical “operators”: ‘<’ — true if x<y, >’ —
true if x>y, ‘=’ — true if x=y, ‘&’ — true if x and y both nonzero, ‘|’ — true if x or y nonzero.

These logical operators have lowest priority and return 1 if true or 0 if false.

The basic functions are: ‘sqrt(x)’ — square root of x, ‘pow(x,y)’ — power x in y, ‘In(x)’
— natural logarithm of x, ‘1g(x)’ — decimal logarithm of x, ‘log(a,x)’ — logarithm base
a of x, ‘abs(x)’ — absolute value of x, ‘sign(x)’ — sign of x, ‘mod(x,y)’ — x modulo y,
‘step(x)’ — step function, ‘int(x)’ — integer part of x, ‘rnd’ — random number, ‘pi’ —
number 7 = 3.1415926...

Trigonometric functions are: ‘sin(x)’, ‘cos(x)’, ‘tan(x)’ (or ‘tg(x)’). Inverse trigono-
metric functions are: ‘asin(x)’, ‘acos(x)’, ‘atan(x)’. Hyperbolic functions are: ‘sinh(x)’
(or ‘sh(x)’), ‘cosh(x)’ (or ‘ch(x)’), ‘tanh(x)’ (or ‘th(x)’). Inverse hyperbolic functions
are: ‘asinh(x)’, ‘acosh(x)’, ‘atanh(x)’.

There are a set of special functions: ‘gamma(x)’ — Gamma function I'(z) = [;° dttlz —
1}exp(—t) , ‘psi(x)’ — digamma function (z) = I'(x)/I'(x) for x!=0, ‘ai(x)’ — Airy
function Ai(x), ‘bi(x)’ — Airy function Bi(x), ‘c1(x)’ — Clausen function, ‘1i2(x)’ (or
‘dilog(x)’) — dilogarithm Liy(z) = —R [ dslog(l — s)/s, ‘sinc(x)’ — compute sinc(z) =
sin(rz)/(wz) for any value of x, ‘zeta(x)’ — Riemann zeta function ((s) = 3>k = 1okt —
s} for arbitrary s!=1, ‘eta(x)’ — eta function n(s) = (1 — 2{1 — s})((s) for arbitrary s,
‘1p(1,x)’ — Legendre polynomial P;(z), (Ix|<=1, I>=0), ‘w0(x)’, ‘wl(x)’ — principal branch
of the Lambert W functions. Function W(x) is defined to be solution of the equation
Wexp(W) = x.

The exponent integrals are: ‘ci(x)’ — Cosine integral Ci(z) = [ dtcos(t)/t,
‘si(x)’ - Sine integral Si(z) = [, dtsin(t)/t, ‘erf(x)’ — error function
erf(z) = (2/V/(n)) [y dtexp(—t?), ‘ei(x)’ — exponential integral FEi(z) :=
—PV ([ —z}>*dtexp(—t)/t) (where PV denotes the principal value of the integral), ‘el (x)’
— exponential integral F;(z) := Re [” dtexp(—at)/t , ‘e2(x)’ — exponential integral
Es(z) := Re [ dtexp(—axt)/t?, ‘ei3(x)’ — exponential integral Eiz(z) = [ dt exp(—t?)
for x>=0.

Bessel functions are: ‘j(nu,x)’ — regular cylindrical Bessel function of fractional order
nu, ‘y(nu,x)’ — irregular cylindrical Bessel function of fractional order nu, ‘i(nu,x)’ —
regular modified Bessel function of fractional order nu, ‘k (nu,x)’ — irregular modified Bessel
function of fractional order nu.



Chapter 2: General concepts 10

Elliptic integrals are: ‘ee (k)’ — complete elliptic integral is denoted by E(k) = E(7/2, k),
‘ek(k)’ — complete elliptic integral is denoted by K (k) = F(w/2,k), ‘e(phi,k)’ — ellip-
tic integral E(p,k) = [7dt\/((1 — k*sin®(t))), ‘£ (phi,k)’ — elliptic integral F(¢,k) =
J2dt1//((1 — k2 sin®(t))).

Jacobi elliptic functions are: ‘sn(u,m)’, ‘cn(u,m)’, ‘dn(u,m)’, ‘sc(u,m)’, ‘sd(u,m)’,
‘ns(u,m)’, ‘cs(u,m)’, ‘cd(u,m)’, ‘nc(u,m)’, ‘ds(u,m)’, ‘dc(u,m)’, ‘nd(u,m)’.

Note, some of these functions are unavailable if MathGL was compiled without GSL
support.

There is no difference between lower or upper case in formulas. If argument value lie
outside the range of function definition then function returns NaN.

2.7 Command options

Command options allow the easy setup of the selected plot by changing global settings only
for this plot. Each option start from symbol ‘;’. Options work so that MathGL remember
the current settings, change settings as it being set in the option, execute function and
return the original settings back. So, the options are most usable for plotting functions.

The most useful options are xrange, yrange, zrange. They sets the boundaries for data
change. This boundaries are used for automatically filled variables. So, these options allow
one to change the position of some plots. For example, in command Plot(y,"","xrange
0.10.9"); or plot y; xrange 0.1 0.9 the x coordinate will be equidistantly distributed
in range 0.1 ... 0.9. See Section 5.9.14 [Using options|, page 142, for sample code and
picture.

The full list of options are:

alpha val [MGL option]
Sets alpha value (transparency) of the plot. The value should be in range [0, 1]. See
also [alphadef], page 12.

xrange vall val2 [MGL option]
Sets boundaries of x coordinate change for the plot. See also [xrange|, page 15.

yrange vall val2 [MGL option]
Sets boundaries of y coordinate change for the plot. See also [yrange], page 15.

zrange vall val2 [MGL option]
Sets boundaries of z coordinate change for the plot. See also [zrange|, page 15.

cut val [MGL option]
Sets whether to cut or to project the plot points lying outside the bounding box. See
also [cut], page 14.

size val [MGL option]
Sets the size of text, marks and arrows. See also [font], page 14, [marksize|, page 13,
[arrowsize], page 13.

meshnum val [MGL option]
Work like [meshnum|, page 14 command.



Chapter 2: General concepts 11

legend ’txt’ [MGL option]
Adds string ’txt’ to internal legend accumulator. The style of described line and mark
is taken from arguments of the last Section 3.10 [1D plotting], page 26 command. See
also [legend], page 26.

value val [MGL option]
Set the value to be used as additional numeric parameter in plotting command.

2.8 Interfaces

You can use mglParse class for executing MGL scripts from different languages.



Chapter 3: MathGL core 12

3 MathGL core

This chapter contains a lot of plotting commands for 1D, 2D and 3D data. It also encap-
sulates parameters for axes drawing. Moreover an arbitrary coordinate transformation can
be used for each axis. Additional information about colors, fonts, formula parsing can be
found in Chapter 2 [General concepts|, page 4. The full list of symbols used by MathGL
for setting up plots can be found in Section A.1 [Symbols for styles|, page 147.

3.1 Create and delete objects

You don’t need to create canvas object in MGL.

3.2 Graphics setup

Functions and variables in this group influences on overall graphics appearance. So all of
them should be placed before any actual plotting function calls.

3.2.1 Transparency

There are several functions and variables for setup transparency. The general function is
[alphal, page 12 which switch on/off the transparency for overall plot. It influence only for
graphics which created after [alpha], page 12 call (with one exception, OpenGL). Function
[alphadef], page 12 specify the default value of alpha-channel. Finally, function [transptype],
page 12 set the kind of transparency. See Section 5.9.2 [Transparency and lighting], page 126,
for sample code and picture.

alpha [val=on] [MGL command]
Sets the transparency on/off and returns previous value of transparency. It is recom-
mended to call this function before any plotting command. Default value is trans-
parency off.

alphadef val [MGL command]
Sets default value of alpha channel (transparency) for all plotting functions. Initial
value is 0.5.

transptype val [MGL command]

Set the type of transparency. Possible values are:

e Normal transparency (‘0’) — below things is less visible than upper ones. It does
not look well in OpenGL mode (mglGraphGL) for several surfaces.

e Glass-like transparency (‘1’) — below and upper things are commutable and just
decrease intensity of light by RGB channel.

e Lamp-like transparency (‘2’) — below and upper things are commutable and are
the source of some additional light. I recommend to set SetAlphaDef (0.3) or
less for lamp-like transparency.

See Section 5.9.3 [Types of transparency|, page 127, for sample code and picture..



Chapter 3: MathGL core 13

3.2.2 Lighting

There are several functions for setup lighting. The general function is [light], page 13 which
switch on/off the lighting for overall plot. It influence only for graphics which created
after [light], page 13 call (with one exception, OpenGL). Generally MathGL support up
to 10 independent light sources. But in OpenGL mode only 8 of light sources is used due
to OpenGL limitations. The position, color, brightness of each light source can be set
separately. By default only one light source is active. It is source number 0 with white
color, located at top of the plot.

light [val=on] [MGL command]
Sets the using of light on/off for overall plot. Function returns previous value of
lighting. Default value is lightning off.

light num val [MGL command]
Switch on/off n-th light source separately.

light num xdir ydir zdir ['col’="w’ br=0.5] [MGL command]

light num xdir ydir zdir xpos ypos zpos [’col’="w’ br=0.5] [MGL command]

The function adds a light source with identification n in direction d with color ¢ and
with brightness bright (which must be in range [0,1]). If position r is specified and
isn’t NAN then light source is supposed to be local otherwise light source is supposed
to be placed at infinity.

ambient val [MGL command]
Sets the brightness of ambient light. The value should be in range [0,1].

3.2.3 Fog

fog val [dz=0.25] [MGL command]
Function imitate a fog in the plot. Fog start from relative distance dz from view point
and its density growths exponentially in depth. So that the fog influence is determined
by law ~ 1-exp(-d*z). Here z is normalized to 1 depth of the plot. If value d=0 then
the fog is absent. Note, that fog was applied at stage of image creation, not at stage
of drawing. See Section 5.9.5 [Adding fog], page 130, for sample code and picture.

3.2.4 Default sizes

These variables control the default (initial) values for most graphics parameters including
sizes of markers, arrows, line width and so on. As any other settings these ones will influence
only on plots created after the settings change.

barwidth val [MGL command]
Sets relative width of rectangles in [bars], page 28, [barh], page 28, [boxplot], page 29,
[candle], page 29. Default value is 0.7.

marksize val [MGL command]
Sets size of marks for Section 3.10 [1D plotting], page 26. Default value is 1.

arrowsize val [MGL command]
Sets size of arrows for Section 3.10 [1D plotting], page 26, lines and curves (see
Section 3.6 [Primitives|, page 21). Default value is 1.



Chapter 3: MathGL core 14

meshnum val [MGL command]
Sets approximate number of lines in [mesh|, page 31, [fall], page 31, [grid], page 25
and also the number of hachures in [vect], page 37, [dew], page 38 and the number of
cells in [cloud], page 34. By default (=0) it draws all lines/hachures/cells.

facenum val [MGL command]
Sets approximate number of visible faces. Can be used for speeding up drawing by
cost of lower quality. By default (=0) it draws all of them.

plotid ’id’ [MGL command]
Sets default name id as filename for saving (in FLTK window for example).

3.2.5 Cutting

These variables and functions set the condition when the points are excluded (cutted) from
the drawing. Note, that a point with NAN value(s) of coordinate or amplitude will be
automatically excluded from the drawing. See Section 5.2.9 [Cutting sample], page 70, for
sample code and picture.

cut val [MGL command]
Flag which determines how points outside bounding box are drawn. If it is true then
points are excluded from plot (it is default) otherwise the points are projected to
edges of bounding box.

cut x1 y1 z1 x2 y2 z2 [MGL command]
Lower and upper edge of the box in which never points are drawn. If both edges are
the same (the variables are equal) then the cutting box is empty.

cut ’cond’ [MGL command]
Sets the cutting off condition by formula cond. This condition determine will point
be plotted or not. If value of formula is nonzero then point is omitted, otherwise it
plotted. Set argument as "" to disable cutting off condition.

3.2.6 Font settings

font ’fnt’ [val=6] [MGL command]
Font style for text and labels (see text). Initial style is ’fnt’=":rC’ give Roman font
with centering. Parameter val sets the size of font for tick and axis labels. Default
font size of axis labels is 1.4 times large than for tick labels. For more detail, see
Section 2.5 [Font styles], page 8.

rotatetext val [MGL command]
Sets to use or not text rotation.

loadfont [‘name’="] [MGL command]
Load font typeface from path/name. Empty name will load default font.



Chapter 3: MathGL core 15

3.2.7 Palette and colors

palette ’colors’ [MGL command]
Sets the palette as selected colors. Default value is "Hbgrcmyhlngeup" that corre-
sponds to colors: dark gray ‘H’, blue ‘b’, green ‘g’, red ‘r’, cyan ‘c’, magenta ‘m’, yellow
‘y’, gray ‘h’, blue-green ‘1’; sky-blue ‘n’, orange ‘q’, yellow-green ‘e’, blue-violet ‘u’,
purple ‘p’. The palette is used mostly in 1D plots (see Section 3.10 [1D plotting],
page 26) for curves which styles are not specified. Internal color counter will be nul-
lified by any change of palette. This includes even hidden change (for example, by
[box], page 25 or [axis|, page 24 functions).

3.2.8 Error handling

3.3 Axis settings

These large set of variables and functions control how the axis and ticks will be drawn. Note
that there is 3-step transformation of data coordinates are performed. Firstly, coordinates
are projected if Cut=true (see Section 3.2.5 [Cutting], page 14), after it transformation
formulas are applied, and finally the data was normalized in bounding box.

3.3.1 Ranges (bounding box)

xrange v1 v2 [MGL command]
yrange vl v2 [MGL command]
zrange v1 v2 [MGL command]
crange vl v2 [MGL command]

Sets the range for ‘x’-,‘y’-,‘z’- coordinate or coloring (‘c’). See also [ranges], page 15.

xrange dat [add=off] [MGL command]
yrange dat [add=off] [MGL command|]
zrange dat [add=off] [MGL command]
crange dat [add=off] [MGL command]
Sets the range for ‘x’-,‘y’-,‘z’- coordinate or coloring (‘c’) as minimal and maximal
values of data dat. Parameter add=on shows that the new range will be joined to

existed one (not replace it).

ranges x1 x2 y1 y2 [z1=0 z2=0] [MGL command]
Sets the ranges of coordinates. If minimal and maximal values of the coordinate are
the same then they are ignored. Also it sets the range for coloring (analogous to
crange z1 z2). This is default color range for 2d plots. Initial ranges are [-1, 1].

origin x0 yO [zO=nan] [MGL command]
Sets center of axis cross section. If one of values is NAN then MathGL try to select
optimal axis position.

zoomaxis x1 x2 [MGL command]
zoomaxis x1 y1 x2 y2 [MGL command]
zoomaxis x1 y1 z1 x2 y2 z2 [MGL command]



Chapter 3: MathGL core 16

zoomaxis x1 y1 z1 cl1 x2 y2 22 c2 [MGL command]

Additionally extend axis range for any settings made by SetRange or SetRanges
functions according the formula min+ = (max — min) * pl and maz+ = (max —
min) * pl (or minx = (max/min)?’1 and maz* = (max/min)P1 for log-axis range
when inf > max/min > 100 or 0 < max/min < 0.01). Initial ranges are [0, 1].
Attention! this settings can not be overwritten by any other functions, including
DefaultPlotParam().

3.3.2 Curved coordinates

axis

axis

5 Ofy 2 [fa’=") [MGL command]
Sets transformation formulas for curvilinear coordinate. Fach string should contain
mathematical expression for real coordinate depending on internal coordinates ‘x’, ‘y’,
‘z” and ‘a’ or ‘c’ for colorbar. For example, the cylindrical coordinates are introduced
as SetFunc("xxcos(y)", "x*sin(y)", "z");. For removing of formulas the corre-
sponding parameter should be empty or NULL. Using transformation formulas will
slightly slowing the program. Parameter EqA set the similar transformation formula

for color scheme. See Section 2.6 [Textual formulas], page 9.

how [MGL command]
Sets one of the predefined transformation formulas for curvilinear co-
ordinate. Paramater how define the coordinates: mglCartesian=0 —
Cartesian coordinates (no transformation); mglPolar=1 - Polar coordinates
T, = x % cos(y),y, = x * sin(y),z, = z; mglSpherical=2 — Sperical coor-
dinates z, = =z x sin(y) * cos(2),y, = = x sin(y) * sin(z),z, = x * cos(y);

mglParabolic=3 — Parabolic coordinates =, = z*xy,y, = (x*xx —y*y)/2, 2, = 2;
mglParaboloidal=4 — Paraboloidal coordinates x,, = (z xx — y x y) % cos(z)/2,y, =

(x * x —y *xy) x sin(2)/2,2z, = = *y; mglOblate=5 — Oblate coordinates
x, = cosh(x) * cos(y) * cos(z),y, = cosh(x) * cos(y) * sin(z), z, = sinh(z) * sin(y);
mglProlate=6 — Prolate coordinates z, = sinh(z) x sin(y) * cos(z),y, =

sinh(z) * sin(y) * sin(z), z, = cosh(z) * cos(y); mglE1liptic=7 — Elliptic coordinates
x, = cosh(x) x cos(y),y, = sinh(x) % sin(y),z, = z; mglToroidal=8 — Toroidal
coordinates x,, = sinh(x)*cos(z)/(cosh(x)—cos(y)), y, = sinh(x)*sin(z)/(cosh(x)—
cos(y)), zn = sin(y)/(cosh(x) — cos(y)); mglBispherical=9 — Bispherical coordinates
x, = sin(y) * cos(z)/(cosh(x) — cos(y)), yn = sin(y) x sin(z)/(cosh(x) — cos(y)), zn =
sinh(x)/(cosh(x) — cos(y)); mglBipolar=10 —  Bipolar  coordinates
x, = sinh(x)/(cosh(z) — cos(y)),yn = sin(y)/(cosh(x) — cos(y)),zn = z;
mglLogLog=11 — log-log coordinates x,, = lg(x),yn = lg(y), 2, = lg(2); mglLogX=12
— log-x coordinates z, = lg(z),y, = ¥y,z, = z; mgllLogY=13 — log-y coordinates
Ty =2, Y, =19(y), 2, = 2.

ternary val [MGL command]

The function sets to draws Ternary (tern=1), Quaternary (tern=2) plot or projections
(tern=4,5,6).

Ternary plot is special plot for 3 dependent coordinates (components) a, b, ¢ so that
atb+c=1. MathGL uses only 2 independent coordinates a=x and b=y since it is
enough to plot everything. At this third coordinate z act as another parameter to
produce contour lines, surfaces and so on.



Chapter 3: MathGL core 17

Correspondingly, Quaternary plot is plot for 4 dependent coordinates a, b, ¢ and d so
that a+b+c+d=1. MathGL uses only 3 independent coordinates a=x, b=y and d=z
since it is enough to plot everything.

Projections can be obtained by adding value 4 to tern argument. So, that tern=4 will
draw projections in Cartesian coordinates, tern=5 will draw projections in Ternary
coordinates, tern=6 will draw projections in Quaternary coordinates.

Use Ternary(0) for returning to usual axis. See Section 5.2.6 [Ternary axis|, page 66,
for sample code and picture. See Section 5.9.4 [Axis projection], page 129, for sample
code and picture.

3.3.3 Ticks

adjust [dir'="xyzc] [MGL command]
Set the ticks step, number of sub-ticks and initial ticks position to be the most human
readable for the axis along direction(s) dir. Also set SetTuneTicks(true). Usually
you don’t need to call this function except the case of returning to default settings.

xtick val [sub=0 org=nan)] [MGL command]

ytick val [sub=0 org=nan)] [MGL command]

ztick val [sub=0 org=nan)] [MGL command]

ctick val [sub=0 org=nan] [MGL command]
Set the ticks step d, number of sub-ticks ns (used for positive d) and initial ticks
position org for the axis along direction dir (use ’c’ for colorbar ticks). Variable d
set step for axis ticks (if positive) or it’s number on the axis range (if negative). Zero
value set automatic ticks. If org value is NAN then axis origin is used.

xtick vall ’Ibll’ [val2 ’Ibl2’ .. [MGL command]
ytick vall ’Ibll’ [val2 ’Ibl2’ .. [MGL command]
ztick vall Ibll’ [val2 'Ibl2’ ... [MGL command]

Set the manual positions val and its labels Ibl for ticks along axis dir. If array val

is absent then values equidistantly distributed in interval [Min.x, Max.x] are used.
Labels are separated by ‘\n’ symbol. Use SetTicks() to restore automatic ticks.

xtick ’templ’ MGL command

[ ]
ytick ’‘templ’ [MGL command]
ztick ’templ’ [MGL command]
ctick ’‘templ’ [MGL command]

Set template templ for x-,y-,z-axis ticks or colorbar ticks. It may contain TeX symbols
also. If templ="" then default template is used (in simplest case it is ‘%.2g’). Setting
on template switch off automatic ticks tuning.

ticktime ’dir’ [dv ‘tmpl] [MGL command]
Sets time labels with step val and template templ for x-,y-,z-axis ticks or colorbar
ticks. It may contain TeX symbols also. The format of template templ is the same as
described in http://www.manpagez.com/man/3/strftime/. Most common variants
are ‘%X’ for national representation of time, ‘%x’ for national representation of date,
‘%Y’ for year with century. If val=0 and/or templ="" then automatic tick step and/or
template will be selected. You can use mgl_get_time() function for obtaining number


http://www.manpagez.com/man/3/strftime/

Chapter 3: MathGL core 18

of second for given date/time string. Note, that MS Visual Studio couldn’t handle
date before 1970.

tuneticks val [pos=1.15] [MGL command]
Switch on/off ticks enhancing by factoring common multiplier (for small, like from
0.001 to 0.002, or large, like from 1000 to 2000, coordinate values — enabled if tune&1 is
nonzero) or common component (for narrow range, like from 0.999 to 1.000 — enabled
if tune&?2 is nonzero). Also set the position pos of common multiplier/component on
the axis: =0 at minimal axis value, =1 at maximal axis value. Default value is 1.15.

tickshift dx [dy=0 dz=0 dc=0] [MGL command]
Set value of additional shift for ticks labels.

origintick val [MGL command]
Enable/disable drawing of ticks labels at axis origin. In C/Fortran you can use mgl_
set_flag(gr,val, MGL_NO_ORIGIN) ;.

ticklen val [stt=1] [MGL command]
The relative length of axis ticks. Default value is 0.1. Parameter stt>0 set relative
length of subticks which is in sqrt(1+stt) times smaller.

axisstl ’stl’ ['tck’=" ‘sub’="] [MGL command]
The line style of axis (stl), ticks (tck) and subticks (sub). If stl is empty then default
style is used (‘k’ or ‘w’ depending on transparency type). If tck or sub is empty then
axis style is used (i.e. stl).

3.4 Subplots and rotation

These functions control how and where further plotting will be placed. There is a certain
calling order of these functions for the better plot appearance. First one should be [subplot],
page 18, [multiplot], page 19 or [inplot], page 19 for specifying the place. Second one can
be [title], page 19 for adding title for the subplot. After it a [rotate]|, page 19 and [aspect],
page 20. And finally any other plotting functions may be called. Alternatively you can use
[columnplot], page 19, [gridplot], page 19, [stickplot], page 19 or relative [inplot], page 19 for
positioning plots in the column (or grid, or stick) one by another without gap between plot
axis (bounding boxes). See Section 5.2.1 [Subplots|, page 57, for sample code and picture.

subplot nx ny m [’stl’=’<>_"’ dx=0 dy=0] [MGL command]
Puts further plotting in a m-th cell of nx*ny grid of the whole frame area. This
function set off any aspects or rotations. So it should be used first for creating the
subplot. Extra space will be reserved for axis/colorbar if st! contain:

e ‘L’ or ‘<’ — at left side,
e ‘R’ or >’ — at right side,
e ‘A’or ‘°’ — at top side,
e ‘U’ or ‘_’ — at bottom side,
e ‘#’ — reserve none space (use whole region for axis range).
From the aesthetical point of view it is not recommended to use this function with

different matrices in the same frame. The position of the cell can be shifted from its
default position by relative size dx, dy.



Chapter 3: MathGL core 19

multiplot nx ny m dx dy [’style’="<>_""] [MGL command]
Puts further plotting in a rectangle of dx*dy cells starting from m-th cell of nx*ny
grid of the whole frame area. This function set off any aspects or rotations. So it
should be used first for creating subplot. Extra space will be reserved for axis/colorbar
if stl contain:

e ‘L’ or ‘<’ — at left side,
e ‘R’ or >’ — at right side,
e ‘A’or ‘°’ — at top side,

e ‘U or ‘_’ — at bottom side.

inplot x1 x2 y1 y2 [rel=on] [MGL command]
Puts further plotting in some region of the whole frame surface. This function allows
one to create a plot in arbitrary place of the screen. The position is defined by rectan-
gular coordinates [x1, x2]*[y1, y2]. The coordinates x1, x2, y1, y2 are normalized to
interval [0, 1]. If parameter rel=true then the relative position to current [subplot],
page 18 (or [inplot], page 19 with rel=false) is used. This function set off any aspects
or rotations. So it should be used first for creating subplot.

columnplot num ind [d=0] [MGL command]
Puts further plotting in ind-th cell of column with num cells. The position is relative
to previous [subplot], page 18 (or [inplot], page 19 with rel=false). Parameter d set
extra gap between cells.

gridplot nx ny ind [d=0] [MGL command]
Puts further plotting in ind-th cell of nx*ny grid. The position is relative to previous
[subplot], page 18 (or [inplot], page 19 with rel=false). Parameter d set extra gap
between cells.

stickplot num ind tet phi [MGL command]
Puts further plotting in ind-th cell of stick with num cells. At this, stick is rotated
on angles tet, phi. The position is relative to previous [subplot], page 18 (or [inplot],
page 19 with rel=false).

title ’title’ ['stI'=" size=-2] [MGL command]
Add text title for current subplot/inplot. Paramater stl can contain:
e font style (see, Section 2.5 [Font styles|, page 8);
e ‘#’ for box around the title.

Parameter size set font size. This function set off any aspects or rotations. So it
should be used just after creating subplot.

rotate tetz tetx [tety=0] [MGL command]
Rotates a further plotting relative to each axis {x, z, y} consecutively on angles TetX,
TetZ, TetY.

rotate tetxy z [MGL command]

Rotates a further plotting around vector {x, y, z} on angle Tet.



Chapter 3: MathGL core 20

aspect ax ay [az=1] [MGL command]
Defines aspect ratio for the plot. The viewable axes will be related one to another
as the ratio Ax:Ay:Az. For the best effect it should be used after [rotate], page 19
function. If Ax is NAN then function try to select optimal aspect ratio to keep equal
ranges for x-y axis. At this, Ay will specify proportionality factor, or set to use
automatic one if Ay=NAN.

perspective val [MGL command]
Add (switch on) the perspective to plot. The parameter a 1/z;eff} € [0,1). By
default (a=0) the perspective is off.

There are 2 functions View() and Zoom() which transform whole image. l.e. they act
as secondary transformation matrix. They were introduced for rotating/zooming the whole
plot by mouse. It is not recommended to call them for picture drawning.

view tetx tetz [tety=0] [MGL command]
Rotates a further plotting relative to each axis {x, z, y} consecutively on angles
TetX, TetZ, TetY. Rotation is done independently on [rotate], page 19. Attention!
this settings can not be overwritten by DefaultPlotParam(). Use Zoom(0,0,1,1)
to return default view.

zoom x1 y1 x2 y2 [MGL command]
The function changes the scale of graphics that correspond to zoom in/out of the
picture. After function call the current plot will be cleared and further the picture
will contain plotting from its part [x1,x2]*[y1,y2]. Here picture coordinates x1, x2,
v1, y2 changes from 0 to 1. Attention! this settings can not be overwritten by
any other functions, including DefaultPlotParam(). Use Zoom(0,0,1,1) to return
default view.

3.5 Export picture

Functions in this group save or give access to produced picture. So, usually they should be
called after plotting is done.

setsize wh [MGL command]
Sets size of picture in pixels. This function must be called before any other plotting
because it completely remove picture contents.

quality [val=2] [MGL command]
Sets quality of the plot depending on value val: MGL_DRAW_WIRE=0 — no face drawing
(fastest), MGL_DRAW_FAST=1 — no color interpolation (fast), MGL_DRAW_NORM=2 — high
quality (normal), MGL_DRAW_HIGH=3 — high quality with 3d primitives (arrows and
marks). If MGL_DRAW_LMEM=0x4 is set then direct bitmap drawing is used (low memory
usage).

3.5.1 Export to file

These functions export current view to a graphic file. The filename fname should have
appropriate extension. Parameter descr gives the short description of the picture. Just now
the transparency is supported in PNG, SVG, OBJ and PRC files.



Chapter 3: MathGL core 21

write [fname’="] [MGL command]
Exports current frame to a file fname which type is determined by the extension.
Parameter descr adds description to file (can be ""). If fname="" then the file

‘frame####. jpg’ is used, where ‘####’ is current frame id and name ‘frame’ is defined
by [plotid], page 14 class property.

3.5.2 Frames/Animation

There are no commands for making animation in MGL. However you can use features of

?

mglconv and mglview utilities. For example, by busing special comments ‘##a ’ or ‘##c .

3.5.3 Bitmap in memory

3.5.4 Parallelization

3.6 Primitives

These functions draw some simple objects like line, point, sphere, drop, cone and so on. See
Section 5.9.7 [Using primitives|, page 131, for sample code and picture.

clf [MGL command]
Clear the picture and fill it by color specified color.

ball x y [col’="r.]] [MGL command]

ball xy z [‘col’="r.] [MGL command]
Draws a mark (point ‘.” by default) at position p={x, y, z} with color col.

errbox x y ex ey [’stI'=" [MGL command]

errbox x y z ex ey ez [’stI'=" [MGL command]

Draws a 3d error box at position p={x, y, z} with sizes e={ex, ey, ez} and style stl.
Use NAN for component of e to reduce number of drawn elements.

line x1 y1 x2 y2 [’stI'="] [MGL command]

line x1 y1 z1 x2 y2 z2 [’stI'=" [MGL command]
Draws a geodesic line (straight line in Cartesian coordinates) from point pl to p2
using line style stl. Parameter num define the “quality” of the line. If num=2 then the
stright line will be drawn in all coordinate system (independently on transformation
formulas (see Section 3.3.2 [Curved coordinates|, page 16). Contrary, for large values
(for example, =100) the geodesic line will be drawn in corresponding coordinate
system (straight line in Cartesian coordinates, circle in polar coordinates and so on).
Line will be drawn even if it lies out of bounding box.

curve x1 y1 dx1 dyl x2 y2 dx2 dy2 [’stI'=" [MGL command]

curve x1 y1 z1 dx1 dyl dzl x2 y2 z2 dx2 dy2 dz2 [’stI'=" [MGL command]
Draws Bezier-like curve from point pl to p2 using line style stl. At this tangent is
codirected with dI, d2 and proportional to its amplitude. Parameter num define the
“quality” of the curve. If num=2 then the straight line will be drawn in all coor-
dinate system (independently on transformation formulas, see Section 3.3.2 [Curved
coordinates|, page 16). Contrary, for large values (for example, =100) the spline like
Bezier curve will be drawn in corresponding coordinate system. Curve will be drawn
even if it lies out of bounding box.



Chapter 3: MathGL core 22

face x1 y1 x2 y2 x3 y3 x4 y4 [’stI'="] [MGL command]

face x1 y1 z1 x2 y2 22 x3 y3 23 x4 y4 z4 [’stI'="] [MGL command]
Draws the solid quadrangle (face) with vertexes pl, p2, p3, p4 and with color(s) stl.
At this colors can be the same for all vertexes or different if all 4 colors are specified
for each vertex. Face will be drawn even if it lies out of bounding box.

rect x1 y1 x2 y2 [’stI'="] [MGL command]
rect x1 yl z1 x2 y2 z2 ['stI'="] [MGL command]
Draws the solid rectangle (face) with vertexes {x1, yI, z1} and {x2, y2, z2} with
color stl. At this colors can be the same for all vertexes or separately if all 4 colors
are specified for each vertex. Face will be drawn even if it lies out of bounding box.

facex x0 y0 z0 wy wz [’stI'=" d1=0 d2=0] [MGL command]
facey x0 y0 z0 wx wz [’stI'=" d1=0 d2=0] [MGL command|]
facez x0 y0 z0 wx wy [’stI'=" d1=0 d2=0] [MGL command]

Draws the solid rectangle (face) perpendicular to [x,y,z]-axis correspondingly at po-
sition {x0, y0, z0} with color stl and with widths wx, wy, wz along corresponding
directions. At this colors can be the same for all vertexes or separately if all 4 colors
are specified for each vertex. Parameters d1!=0, d2!=0 set additional shift of the last
vertex (i.e. to draw quadrangle). Face will be drawn even if it lies out of bounding

box.
sphere x0 yO r ['col’="r]] [MGL command]
sphere x0 y0 z0 r [‘col’'="r]] [MGL command]
Draw the sphere with radius r and center at point p={x0, y0, z0} and color stl.
drop x0 y0 dx dy r [‘col’="r’ sh=1 asp=1] [MGL command]
drop x0 y0 z0 dx dy dz r [col’="r’ sh=1 asp=1]| [MGL command]

Draw the drop with radius r at point p elongated in direction d and with color col.
Parameter shift set the degree of drop oblongness: ‘0’ is sphere, ‘1’ is maximally
oblongness drop. Parameter ap set relative width of the drop (this is analogue of
“ellipticity” for the sphere).

cone x1 y1z1x2y2z2rl [r2=-1 'stI'="] [MGL command]
Draw tube (or truncated cone if edge=false) between points pl, p2 with radius at
the edges rl1, r2. If r2<0 then it is supposed that r2=rl1. The cone color is defined by
string stl. If style contain ‘@’ then edges will be drawn.

circle x0 yO r [‘col’="r] [MGL command]

circle x0 yO0 z0 r ['col’'="r’ [MGL command]
Draw the circle with radius r and center at point p={x0, y0, z0}. Parameter col may
contain

e colors for filling and boundary (second one if style ‘@’ is used, black color is used
by default);

e ‘#’ for wire figure (boundary only);

e ‘@ for filling and boundary.



Chapter 3: MathGL core 23

ellipse x1 y1 x2 y2 r [‘col’="r] [MGL command]
ellipse x1 yl1 z1 x2y2 z2r [col’="r] [MGL command]
Draw the ellipse with radius r and focal points p1, p2. Parameter col may contain

e colors for filling and boundary (second one if style ‘@’ is used, black color is used
by default);

e ‘#’ for wire figure (boundary only);

e ‘@ for filling and boundary.

rhomb x1 y1 x2 y2 r [‘col’'="r]] [MGL command]
rhomb x1 y1 z1 x2 y2 22 r ['col’="r]] [MGL command]
Draw the rhombus with width r and edge points pl, p2. Parameter col may contain

e colors for filling and boundary (second one if style ‘@’ is used, black color is used
by default);

e ‘#’ for wire figure (boundary only);

e ‘@ for filling and boundary.

3.7 Text printing

These functions draw the text. There are functions for drawing text in arbitrary place, in
arbitrary direction and along arbitrary curve. MathGL can use arbitrary font-faces and
parse many TeX commands (for more details see Section 2.5 [Font styles], page 8). All
these functions have 2 variant: for printing 8-bit text (char *) and for printing Unicode
text (wchar_t *). In first case the conversion into the current locale is used. So sometimes
you need to specify it by setlocale() function. The size argument control the size of text:
if positive it give the value, if negative it give the value relative to SetFontSize (). The
font type (STIX, arial, courier, times and so on) can be selected by function LoadFont().
See Section 3.2.6 [Font settings|, page 14.

The font parameters are described by string. This string may set the text color
‘wkrgbcymhRGBCYMHW’ (see Section 2.2 [Color styles|, page 5). Also, after delimiter symbol
‘:7, it can contain characters of font type (‘rbiwou’) and/or align (‘LRC’) specification. The
font types are: ‘r’ — roman (or regular) font, ‘i’ — italic style, ‘b’ — bold style, ‘w’ — wired
style, ‘o’ — over-lined text, ‘u’ — underlined text. By default roman font is used. The align
types are: ‘L’ — align left (default), ‘C’ — align center, ‘R’ — align right. For example, string
‘b:iC’ correspond to italic font style for centered text which printed by blue color.

If string contains symbols ‘aA’ then text is printed at absolute position {x, y} (supposed
to be in range [0,1]) of picture (for ‘A’) or subplot/inplot (for ‘a’). If string contains symbol
‘@ then box around text is drawn.

See Section 5.2.7 [Text features|, page 67, for sample code and picture.

text x y ‘text’ [fnt’=" size=-1] [MGL command]

text xy z ‘text’ [fnt’=" size=-1] [MGL command]
The function plots the string text at position p with fonts specifying by the criteria
fnt. The size of font is set by size parameter (default is -1).



Chapter 3: MathGL core 24

text x y dx dy ‘text’ [fnt’="L’ size=-1] [MGL command]

text x y z dx dy dz ’text’ [fnt’=":L’ size=-1] [MGL command]
The function plots the string text at position p along direction d with specified size.
Parameter fnt set text style and text position: above (‘T’) or under (‘t’) the line.

fgets x y fname’ [n=0 'fnt’=" size=-1.4] [MGL command]

fgets x y z 'fname’ [n=0 ’fnt’=" size=-1.4| [MGL command]
Draws unrotated n-th line of file fname at position {x,y,z} with specified size. By
default parameters from [font], page 14 command are used.

text ydat ‘text’ ['fnt’="] [MGL command]

text xdat ydat ’text’ ['fnt’="] [MGL command]

text xdat ydat zdat ‘text’ ['fat’=" [MGL command]
The function draws text along the curve between points {x[i], y[i], z[i]} by font style
fnt. The string fnt may contain symbols ‘t’ for printing the text under the curve
(default), or ‘T’ for printing the text above the curve. The sizes of 1st dimension
must be equal for all arrays x.nx=y.nx=z.nx. If array x is not specified then its
an automatic array is used with values equidistantly distributed in interval [Min.x,
Max.x] (see Section 3.3.1 [Ranges (bounding box)], page 15). If array z is not specified
then z[i] = Min.z is used. String opt contain command options (see Section 2.7
[Command options], page 10).

3.8 Axis and Colorbar

These functions draw the “things for measuring”, like axis with ticks, colorbar with ticks,
grid along axis, bounding box and labels for axis. For more information see Section 3.3
[Axis settings|, page 15.

axis ['dir'="xyz’ ’stI'=" [MGL command]|
Draws axes with ticks (see Section 3.3 [Axis settings|, page 15). Parameter dir may
contain:

e ‘xyz’ for drawing axis in corresponding direction;

e ‘XYZ’ for drawing axis in corresponding direction but with inverted positions of
labels;

e ‘_’ for disabling tick labels;

e ‘U’ for disabling rotation of tick labels;

e ‘AKDTVISO’ for drawing arrow at the end of axis;
e ‘a’ for forced adjusting of axis ticks.

Styles of ticks and axis can be overrided by using stl string. See Section 5.2.2 [Axis
and ticks], page 59, for sample code and picture.

colorbar [’sch’=" [MGL command]
Draws colorbar. Parameter sch may contain:

e color scheme (see Section 2.4 [Color scheme]|, page 6);
e ‘<>~_’ for positioning at left, at right, at top or at bottom correspondingly;
e ‘T’ for positioning near bounding (by default, is positioned at edges of subplot);



Chapter 3: MathGL core 25

e ‘A’ for using absolute coordinates.

See Section 5.2.4 [Colorbars], page 64, for sample code and picture.

colorbar vdat ['sch’=" [MGL command]
The same as previous but with sharp colors sch (current palette if sch="") for values
v. See Section 5.6.13 [ContD sample], page 106, for sample code and picture.

colorbar ’sch’x y [w=1 h=1] [MGL command]
The same as first one but at arbitrary position of subplot {x, y} (supposed to be in
range [0,1]). Parameters w, h set the relative width and height of the colorbar.

colorbar vdat ’sch’x y [w=1 h=1] [MGL command]
The same as previous but with sharp colors sch (current palette if sch="") for values
v. See Section 5.6.13 [ContD sample], page 106, for sample code and picture.

grid ['dir'="xyz” 'pen’="B [MGL command]
Draws grid lines perpendicular to direction determined by string parameter dir. The
step of grid lines is the same as tick step for [axis], page 24. The style of lines is
determined by pen parameter (default value is dark blue solid line ‘B-").

box [’stI’="k’ ticks=on] [MGL command]
Draws bounding box outside the plotting volume with color col. If col contain ‘@’
then filled faces are drawn. At this first color is used for faces (default is light yellow),
last one for edges. See Section 5.2.5 [Bounding box|, page 65, for sample code and
picture.

xlabel ’text’ [pos=1] [MGL command]
ylabel ’text’ [pos=1] [MGL command]
zlabel ’text’ [pos=1] [MGL command]
tlabel ’text’ [pos=1] [MGL command]
Prints the label text for axis dir="x’,'y’,'2’,‘t’ (here ‘t’ is “ternary” axist = 1 —x —y).
The position of label is determined by pos parameter. If pos=0 then label is printed
at the center of axis. If pos>0 then label is printed at the maximum of axis. If pos<0
then label is printed at the minimum of axis. Value option set additional shifting of

the label. See Section 3.7 [Text printing], page 23.

3.9 Legend

These functions draw legend to the graph (useful for Section 3.10 [1D plotting], page 26).
Legend entry is a pair of strings: one for style of the line, another one with description text
(with included TeX parsing). The arrays of strings may be used directly or by accumulating
first to the internal arrays (by function [addlegend|, page 26) and further plotting it. The
position of the legend can be selected automatic or manually (even out of bounding box).
Parameters fnt and size specify the font style and size (see Section 3.2.6 [Font settings],
page 14). Parameter llen set the relative width of the line sample and the text indent. If
line style string for entry is empty then the corresponding text is printed without indent.
Parameter fnt may contain:

e font style for legend text;



Chapter 3: MathGL core 26

e ‘A’ for positioning in absolute coordinates;
e ‘#’ for drawing box around legend;

e colors for background (first one) and border (second one) of legend. Note, that last
color is always used as color for legend text.

See Section 5.2.8 [Legend sample|, page 69, for sample code and picture.

legend [pos=3 ’fnt’="#]] [MGL command]
Draws legend of accumulated legend entries by font fnt with size. Parameter pos
sets the position of the legend: ‘0’ is bottom left corner, ‘1’ is bottom right corner,
‘2’ is top left corner, ‘3’ is top right corner (is default). Parameter fnt can contain
colors for face (1st one), for border (2nd one) and for text (last one). If less than
3 colors are specified then the color for border is black (for 2 and less colors), and
the color for face is white (for 1 or none colors). If string fnt contain ‘#’ then border
around the legend is drawn. If string fnt contain ‘-’ then legend entries will arranged
horizontally.

legend x y ['fnt’="#] [MGL command]
Draws legend of accumulated legend entries by font fnt with size. Position of legend
is determined by parameter x, y which supposed to be normalized to interval [0,1].

addlegend ’text’ 'stl’ [MGL command]
Adds string text to internal legend accumulator. The style of described line and mark
is specified in string style (see Section 2.3 [Line styles|, page 5).

clearlegend [MGL command]
Clears saved legend strings.

legendmarks val [MGL command]
Set the number of marks in the legend. By default 1 mark is used.

3.10 1D plotting

These functions perform plotting of 1D data. 1D means that data depended from only 1
parameter like parametric curve {x[i],y[i],z[i]}, i=1...n. By default (if absent) values of xl[i
are equidistantly distributed in axis range, and z[ijJ=Min.z. The plots are drawn for each
row if one of the data is the matrix. By any case the sizes of 1st dimension must be equal
for all arrays x.nx=y.nx=z.nx.

String pen specifies the color and style of line and marks (see Section 2.3 [Line styles],
page 5). By default (pen="") solid line with color from palette is used (see Section 3.2.7
[Palette and colors|, page 15). Symbol ‘!’ set to use new color from palette for each point
(not for each curve, as default). String opt contain command options (see Section 2.7
[Command options], page 10). See Section 5.5 [1D samples], page 78, for sample code and
picture.

plot ydat ['stl'=" [MGL command]
plot xdat ydat [’stI'=" [MGL command]
plot xdat ydat zdat [’stI'="] [MGL command]
These functions draw continuous lines between points {x[i], y[i], z[i]}. See also [area],
page 27, [step|, page 27, [stem], page 28, [tube], page 30, [mark], page 29, [error],



Chapter 3: MathGL core 27

page 29, [belt], page 31, [tens|, page 27, [tape]|, page 27. See Section 5.5.1 [Plot
sample], page 78, for sample code and picture.

radar adat [’stI'="] [MGL command]
This functions draws radar chart which is continuous lines between points located on
an radial lines (like plot in Polar coordinates). Parameter value in options opt set
the additional shift of data (i.e. the data a+value is used instead of a). If value<0
then r=max (0, -min(value). If pen containt ‘#’ symbol then "grid" (radial lines and
circle for r) is drawn. See also [plot], page 26. See Section 5.5.2 [Radar sample],
page 79, for sample code and picture.

step ydat [’stI'="] [MGL command]
step xdat ydat [’stl'=" [MGL command]
step xdat ydat zdat [’stl'=" [MGL command]

These functions draw continuous stairs for points to axis plane. See also [plot],
page 26, [stem], page 28, [tile], page 31, [boxs|, page 31. See Section 5.5.3 [Step
sample], page 80, for sample code and picture.

tens ydat cdat [’st]I’'=" [MGL command]

tens xdat ydat cdat [’stI'="] [MGL command]

tens xdat ydat zdat cdat [’stI'=" [MGL command]
These functions draw continuous lines between points {x[i], y[i], z[i]} with color de-
fined by the special array c[i] (look like tension plot). String pen specifies the color
scheme (see Section 2.4 [Color scheme], page 6) and style and/or width of line (see
Section 2.3 [Line styles|, page 5). See also [plot], page 26, [mesh], page 31, [fall],
page 31. See Section 5.5.4 [Tens sample, page 81, for sample code and picture.

tape ydat [’stl'="] [MGL command]
tape xdat ydat [’stI'=" [MGL command]
tape xdat ydat zdat [’stI'=" [MGL command]

These functions draw tapes of normals for curve between points {x[i], y[i], z[i]}. Initial
tape(s) was selected in x-y plane (for ‘x’ in pen) and/or y-z plane (for ‘x’ in pen).
The width of tape is proportional to [barwidth|, page 13. See also [plot], page 26,
[flow], page 38, [barwidth]|, page 13. See Section 5.5.20 [Tape sample|, page 95, for
sample code and picture.

area ydat [’stI'=" [MGL command]
area xdat ydat [’stI'=" [MGL command]
area xdat ydat zdat [’st]’="] [MGL command]

These functions draw continuous lines between points and fills it to axis plane. Also
you can use gradient filling if number of specified colors is equal to 2*number of
curves. See also [plot], page 26, [bars|, page 28, [stem], page 28, [region], page 27. See
Section 5.5.5 [Area sample], page 82, for sample code and picture.

region ydatl ydat2 [stI'=" [MGL command]
region xdat ydatl ydat2 ['stI'=" [MGL command]
These functions fill area between 2 curves. Dimensions of arrays yl and y2 must
be equal. Also you can use gradient filling if number of specified colors is equal to
2*number of curves. If pen contain symbol ‘i’ then only area with yl<y<y2 will be



Chapter 3: MathGL core 28

filled else the area with y2<y<yl will be filled too. See also [area|, page 27, [bars],
page 28, [stem], page 28. See Section 5.5.6 [Region sample], page 83, for sample code
and picture.

stem ydat ['st]'="] [MGL command]
stem xdat ydat [’stl'=" [MGL command]
stem xdat ydat zdat [’stl'=" [MGL command]

These functions draw vertical lines from points to axis plane. See also [areal, page 27,
[bars|, page 28, [plot], page 26, [mark]|, page 29. See Section 5.5.7 [Stem sample],
page 84, for sample code and picture.

bars ydat [’stl'=" [MGL command]
bars xdat ydat [’stI'=" [MGL command]
bars xdat ydat zdat ['stI'="] [MGL command]

These functions draw vertical bars from points to axis plane. If string pen contain
symbol ‘a’ then lines are drawn one above another (like summation). If string contain
symbol ‘f’ then waterfall chart is drawn for determining the cumulative effect of
sequentially introduced positive or negative values. You can give different colors for
positive and negative values if number of specified colors is equal to 2*number of
curves. See also [barh], page 28, [cones|, page 28, [areal, page 27, [stem], page 28,
[chart], page 28, [barwidth], page 13. See Section 5.5.8 [Bars sample|, page 85, for
sample code and picture.

barh vdat [’stl'="] [MGL command]

barh ydat vdat [’stI'=" [MGL command]
These functions draw horizontal bars from points to axis plane. If string contain
symbol ‘a’ then lines are drawn one above another (like summation). If string contain
symbol ‘f’ then waterfall chart is drawn for determining the cumulative effect of
sequentially introduced positive or negative values. You can give different colors for
positive and negative values if number of specified colors is equal to 2*number of
curves. See also [bars|, page 28, [barwidth], page 13. See Section 5.5.9 [Barh sample],
page 86, for sample code and picture.

cones ydat [’stI'=" [MGL command]
cones xdat ydat [’stl'="] [MGL command]
cones xdat ydat zdat [’stI'=" [MGL command]

These functions draw cones from points to axis plane. If string contain symbol ‘a’ then
cones are drawn one above another (like summation). You can give different colors
for positive and negative values if number of specified colors is equal to 2*number
of curves. See also [bars|, page 28, [barwidth|, page 13. See Section 5.5.10 [Cones
sample], page 87, for sample code and picture.

chart adat [‘col’=" [MGL command]
The function draws colored stripes (boxes) for data in array a. The number of stripes
is equal to the number of rows in a (equal to a.ny). The color of each next stripe is
cyclically changed from colors specified in string col or in palette Pal (see Section 3.2.7
[Palette and colors|, page 15). Spaces in colors denote transparent “color” (i.e. cor-
responding stripe(s) are not drawn). The stripe width is proportional to value of
element in a. Chart is plotted only for data with non-negative elements. If string col



Chapter 3: MathGL core 29

have symbol ‘#’ then black border lines are drawn. The most nice form the chart have
in 3d (after rotation of coordinates) or in cylindrical coordinates (becomes so called
Pie chart). See Section 5.5.11 [Chart sample|, page 88, for sample code and picture.

boxplot adat [’stl’="] [MGL command]

boxplot xdat adat [’stI'="] [MGL command]
These functions draw boxplot (also known as a box-and-whisker diagram) at points
x[i]. This is five-number summaries of data afi,j] (minimum, lower quartile (Q1), me-
dian (Q2), upper quartile (Q3) and maximum) along second (j-th) direction. See also
[plot], page 26, [error], page 29, [bars|, page 28, [barwidth], page 13. See Section 5.5.12
[BoxPlot sample], page 89, for sample code and picture.

candle vdatl ['stl'=" [MGL command]

candle vdatl vdat2 [’stI'="] [MGL command]

candle vdatl ydatl ydat2 [’stI'=" [MGL command]

candle vdatl vdat2 ydatl ydat2 [’stl'=" [MGL command]

candle xdat vdatl vdat2 ydatl ydat2 ['st]'=" [MGL command]
These functions draw candlestick chart at points x[i]. This is a combination of a line-
chart and a bar-chart, in that each bar represents the range of price movement over
a given time interval. Wire (or white) candle correspond to price growth v1[i]<v2[i],
opposite case — solid (or dark) candle. "Shadows" show the minimal yI and maximal
y2 prices. If v2 is absent then it is determined as v2[i]=vI[i+1]. See also [plot],
page 26, [bars], page 28, [barwidth], page 13. See Section 5.5.13 [Candle sample],
page 90, for sample code and picture.

error ydat yerr [’stI'=" [MGL command]
error xdat ydat yerr [’stI'=" [MGL command]
error xdat ydat xerr yerr ['stI'=" [MGL command]

These functions draw error boxes {ex[i], ey[i]} at points {x[i], y[i]}. This can be useful,
for example, in experimental points, or to show numeric error or some estimations
and so on. If string pen contain symbol ‘@ than large semitransparent mark is used
instead of error box. See also [plot], page 26, [mark|, page 29. See Section 5.5.14
[Error sample], page 90, for sample code and picture.

mark ydat rdat [’stI'=" [MGL command]
mark xdat ydat rdat [’st]’="] [MGL command]
mark xdat ydat zdat rdat [’stI'=" [MGL command]

These functions draw marks with size r[i]*[marksize|, page 13 at points {x[i], y[i],
z[i]}. If you need to draw markers of the same size then you can use [plot], page 26
function with empty line style ¢ ’. For markers with size in axis range use [error],
page 29 with style ‘@’. See also [plot], page 26, [textmark], page 29, [error], page 29,

[stem], page 28. See Section 5.5.15 [Mark sample|, page 91, for sample code and

picture.
textmark ydat ‘txt’ [stI'="] [MGL command]
textmark ydat rdat ‘txt’ [’stI'="] [MGL command]

textmark xdat ydat rdat ’txt’ [’stI'=" [MGL command]



Chapter 3: MathGL core 30

textmark xdat ydat zdat rdat ‘txt’ [’stI'=" [MGL command]
These functions draw string txt as marks with size proportional to r[i]*marksize at
points {x[i], y[i], z[i]}. By default (if omitted) r[i]=1. See also [plot], page 26, [mark],
page 29, [stem], page 28. See Section 5.5.16 [TextMark sample|, page 92, for sample
code and picture.

label ydat 'txt’ [’stI'=" [MGL command]
label xdat ydat ’txt’ [’st]'="] [MGL command]
label xdat ydat zdat ‘txt’ [’stI'=" [MGL command]

These functions draw string txt at points {x[i], y[i], z[i]}. If string txt contain ‘%x’,
“hy’, “hz’ or ‘Yn’ then it will be replaced by the value of x-,y-,z-coordinate of the point
or its index. See also [plot], page 26, [mark|, page 29, [textmark], page 29, [table],
page 30. See Section 5.5.17 [Label sample|, page 93, for sample code and picture.

table vdat ‘txt’ ['stI'="#] [MGL command]

table x y vdat ‘txt’ [’stI'="#] [MGL command]
These functions draw table with values of val and captions from string txt (separated
by newline symbol ‘\n’) at points {x, y} (default at {0,0}) related to current subplot.
If string fnt contain ‘#’ then cell border will be drawn. If string fnt contain ‘|’ then
table width is limited by subplot width (equivalent option ‘value 1’). If string fnt
contain ‘=" then widths of all cells are the same. Option value set the width of the
table (default is 1). See also [plot], page 26, [label], page 30. See Section 5.5.18 [Table
sample], page 93, for sample code and picture.

tube ydat rdat [’stI'=" [MGL command]

tube ydat rval [’stI'="] [MGL command]

tube xdat ydat rdat [’st]’="] [MGL command]

tube xdat ydat rval [’stI'=" [MGL command]

tube xdat ydat zdat rdat [’stl'=" [MGL command]

tube xdat ydat zdat rval [’stI'="] [MGL command]
These functions draw the tube with variable radius r[i] along the curve between points
{x[i], y[i], 2[i]}. See also [plot], page 26. See Section 5.5.19 [Tube sample], page 94,
for sample code and picture.

torus rdat zdat [’stI'="] [MGL command]
These functions draw surface which is result of curve {r, z} rotation around axis. If
string pen contain symbols ‘x’ or ‘z’ then rotation axis will be set to specified direction
(default is ‘y’). If string pen have symbol ‘#’ then wire plot is produced. If string
pen have symbol ‘.’ then plot by dots is produced. See also [plot], page 26, [axiall,
page 33. See Section 5.5.21 [Torus sample|, page 96, for sample code and picture.

3.11 2D plotting

These functions perform plotting of 2D data. 2D means that data depend from 2 indepen-
dent parameters like matrix f(x;,y;),7 = 1..n,j = 1...m. By default (if absent) values of
x, y are equidistantly distributed in axis range. The plots are drawn for each z slice of the
data. The minor dimensions of arrays x, y, z should be equal x.nx=z.nx && y.nx=z.ny or
X.nxX=y.nx=z.nx && x.ny=y.ny=z.ny. Arrays x and y can be vectors (not matrices as z).
String sch sets the color scheme (see Section 2.4 [Color scheme], page 6) for plot. String opt



Chapter 3: MathGL core 31

contain command options (see Section 2.7 [Command options|, page 10). See Section 5.6
[2D samples|, page 97, for sample code and picture.

surf
surf

mesh
mesh

fall
fall

belt
belt

boxs
boxs

tile
tile

zdat [’sch’="] [MGL command]
xdat ydat zdat [’sch’="] [MGL command]
The function draws surface specified parametrically {x[i,j], y[i,j], z[i,j]}. If string sch
have symbol ‘#’ then grid lines are drawn. If string sch have symbol ‘.’ then plot

by dots is produced. See also [mesh], page 31, [dens|, page 32, [belt], page 31, [tile],
page 31, [boxs|, page 31, [surfc], page 35, [surfa], page 36. See Section 5.6.1 [Surf
sample], page 97, for sample code and picture.

zdat [’sch’=" [MGL command]
xdat ydat zdat ['sch’="] [MGL command]
The function draws mesh lines for surface specified parametrically {x[i,j], y[i,j], z[i,j]}-
See also [surf], page 31, [fall], page 31, [meshnum]|, page 14, [cont]|, page 32, [tens],
page 27. See Section 5.6.4 [Mesh sample], page 100, for sample code and picture.

zdat [’sch’="] [MGL command]
xdat ydat zdat [’sch’="] [MGL command]
The function draws fall lines for surface specified parametrically {x[i,j], y[i,j], z[i,j]}-
This plot can be used for plotting several curves shifted in depth one from another.
If sch contain ‘x’ then lines are drawn along x-direction else (by default) lines are
drawn along y-direction. See also [belt], page 31, [mesh|, page 31, [tens|, page 27,
[meshnum|, page 14. See Section 5.6.5 [Fall sample], page 100, for sample code and
picture.

zdat [’sch’=" [MGL command]
xdat ydat zdat [’sch’="] [MGL command]
The function draws belts for surface specified parametrically {x[i,j], y[i,j], z[i,j]}. This
plot can be used as 3d generalization of [plot], page 26). If sch contain ‘x’ then belts are
drawn along x-direction else (by default) belts are drawn along y-direction. See also
[fall], page 31, [surf], page 31, [plot], page 26, [meshnum], page 14. See Section 5.6.6
[Belt sample|, page 101, for sample code and picture.

zdat [’sch’=" [MGL command]
xdat ydat zdat [’sch’=" [MGL command]
The function draws vertical boxes for surface specified parametrically {x[i,j], ¥[i,j],
z[1,j]}. Symbol ‘@ in sch set to draw filled boxes. See also [surf], page 31, [dens],
page 32, [tile], page 31, [step], page 27. See Section 5.6.7 [Boxs sample|, page 102, for
sample code and picture.

zdat [’sch’="] [MGL command]
xdat ydat zdat [’sch’="] [MGL command]
The function draws horizontal tiles for surface specified parametrically {x[i,j], y[i,j],
z[1,j]}. Such plot can be used as 3d generalization of [step|, page 27. See also [surf],
page 31, [boxs|, page 31, [step], page 27, [tiles], page 36. See Section 5.6.8 [Tile
sample], page 102, for sample code and picture.



Chapter 3: MathGL core 32

dens zdat [’sch’=" [MGL command]

dens xdat ydat zdat [’sch’=" [MGL command]
The function draws density plot for surface specified parametrically {x[i,j], y[i,jl, 2z[i,j]}
at z = Min.z. If string sch have symbol ‘#’ then grid lines are drawn. If string sch
have symbol ‘.’ then plot by dots is produced. See also [surf], page 31, [cont], page 32,
[contf], page 32, [boxs|, page 31, [tile], page 31, dens[xyz]. See Section 5.6.10 [Dens
sample], page 103, for sample code and picture.

cont vdat zdat [’sch’=" [MGL command]
cont vdat xdat ydat zdat [’sch’=" [MGL command]
The function draws contour lines for surface specified parametrically {x[i,j], y[i,j],
z[1,j]} at z=v[k] or at z = Min.z if sch contain symbol ‘_’. Contours are plotted for

z[i,j]=v[k] where v[k| are values of data array v. If string sch have symbol ‘t’ or
‘T” then contour labels v[k] will be drawn below (or above) the contours. See also
[dens]|, page 32, [contf], page 32, [contd], page 32, [axial], page 33, cont [xyz]. See
Section 5.6.11 [Cont sample|, page 104, for sample code and picture.

cont zdat [’sch’=" [MGL command]

cont xdat ydat zdat [’sch’="] [MGL command]
The same as previous with vector v of num-th elements equidistantly distributed in
color range. Here num is equal to parameter value in options opt (default is 7).

contf vdat zdat [’sch’="] [MGL command]
contf vdat xdat ydat zdat ['sch’=" [MGL command]
The function draws solid (or filled) contour lines for surface specified parametrically
{x[i,j], y[i,j], z[i,j]} at z=v[k] or at z = Min.z if sch contain symbol ‘_’. Contours are

plotted for z[i,jj=v[k] where v[k| are values of data array v (must be v.nx>2). See
also [dens|, page 32, [cont], page 32, [contd], page 32, contf [xyz]. See Section 5.6.12
[ContF sample], page 105, for sample code and picture.

contf zdat ['sch’="] [MGL command]

contf xdat ydat zdat [’sch’=" [MGL command]
The same as previous with vector v of num-th elements equidistantly distributed in
color range. Here num is equal to parameter value in options opt (default is 7).

contd vdat zdat [’sch’=" [MGL command]

contd vdat xdat ydat zdat ['sch’=" [MGL command]
The function draws solid (or filled) contour lines for surface specified parametrically
{x[i,j], y[i,j], z[i,j]} at z=v[k] (or at z = Min.z if sch contain symbol ‘_’) with manual
colors. Contours are plotted for z[i,j]=v[k| where v[k] are values of data array v (must
be v.nx>2). String sch sets the contour colors: the color of k-th contour is determined
by character schlk)%strlen(sch)]. See also [dens], page 32, [cont|, page 32, [contf],
page 32. See Section 5.6.13 [ContD sample], page 106, for sample code and picture.

contd zdat [’sch’=" [MGL command]

contd xdat ydat zdat [’sch’="] [MGL command]
The same as previous with vector v of num-th elements equidistantly distributed in
color range. Here num is equal to parameter value in options opt (default is 7).



Chapter 3: MathGL core 33

contv vdat zdat [’sch’=" [MGL command]

contv vdat xdat ydat zdat ['sch’=" [MGL command]
The function draws vertical cylinder (tube) at contour lines for surface specified para-
metrically {x[i,j], ¥[ij], z[i,j]} at z=v[k] or at z = Min.z if sch contain symbol ‘_’.
Contours are plotted for z[i,jj=v[k] where v[k] are values of data array v. See also
[cont], page 32, [contf], page 32. See Section 5.6.14 [ContV sample], page 107, for
sample code and picture.

contv zdat [’sch’=" [MGL command]

contv xdat ydat zdat [’sch’="] [MGL command]
The same as previous with vector v of num-th elements equidistantly distributed in
color range. Here num is equal to parameter value in options opt (default is 7).

axial vdat zdat [’sch’=" [MGL command]

axial vdat xdat ydat zdat ['sch’=" [MGL command]
The function draws surface which is result of contour plot rotation for surface specified
parametrically {x[i,j], y[i.j], z[i,j]}. Contours are plotted for z[i,j]=v[k] where v[k] are
values of data array v. If string sch have symbol ‘#’ then wire plot is produced. If
string sch have symbol ‘.’ then plot by dots is produced. If string contain symbols
‘x” or ‘z’ then rotation axis will be set to specified direction (default is ‘y’). See also
[cont], page 32, [contf], page 32, [torus], page 30, [surf3], page 33. See Section 5.6.15
[Axial sample], page 108, for sample code and picture.

axial zdat [’sch’="] [MGL command]

axial xdat ydat zdat [’sch’=" [MGL command]
The same as previous with vector v of num-th elements equidistantly distributed in
color range. Here num is equal to parameter value in options opt (default is 3).

grid2 zdat [’sch’=" [MGL command]

grid2 xdat ydat zdat ['sch’="] [MGL command]
The function draws grid lines for density plot of surface specified parametrically {x[i,j],
yv[i,jl, z[i,j]} at z = Min.z. See also [dens|, page 32, [cont], page 32, [contf]|, page 32,
[meshnum|, page 14.

3.12 3D plotting

These functions perform plotting of 3D data. 3D means that data depend from 3 indepen-
dent parameters like matrix f(z;,y;, 2x),7 = 1..n,j = 1...m, k = 1...[. By default (if absent)
values of x, y, z are equidistantly distributed in axis range. The minor dimensions of arrays
X, ¥, z, ashould be equal x.nx=a.nx && y.nx=a.ny && z.nz=a.nz or x.nx=y.nx=z.nx=a.nx
&& x.ny=y.ny=z.ny=a.ny && x.nz=y.nz=z.nz=a.nz. Arrays x, y and z can be vectors (not
matrices as a). String sch sets the color scheme (see Section 2.4 [Color scheme|, page 6) for
plot. String opt contain command options (see Section 2.7 [Command options], page 10).
See Section 5.7 [3D samples], page 109, for sample code and picture.

surf3 adat val [’sch’=" [MGL command]
surf3 xdat ydat zdat adat val [’sch’="] [MGL command]
The function draws isosurface plot for 3d array specified parametrically ali,j,k](x[i,j,k],
yv[i,j.k], z[i,j,k]) at a(x,y,z)=val. If string contain ‘#’ then wire plot is produced. If



Chapter 3: MathGL core 34

string sch have symbol ‘.’ then plot by dots is produced. Note, that there is possibility
of incorrect plotting due to uncertainty of cross-section defining if there are two or
more isosurface intersections inside one cell. See also [cloud], page 34, [dens3], page 34,
[surf3c], page 36, [surf3a], page 36, [axial|, page 33. See Section 5.7.1 [Surf3 sample],
page 110, for sample code and picture.

surf3 adat ['sch’=" [MGL command]

surf3 xdat ydat zdat adat [’sch’=" [MGL command]
Draws num-th uniformly distributed in color range isosurfaces for 3d data. Here num
is equal to parameter value in options opt (default is 3).

cloud adat [’sch’=" [MGL command]
cloud xdat ydat zdat adat [’sch’=" [MGL command]
The function draws cloud plot for 3d data specified parametrically ali,j.k](x[i,j,k],
vli,j,k], z[i,j,k]). This plot is a set of cubes with color and transparency proportional
to value of a. The resulting plot is like cloud — low value is transparent but higher
ones are not. The number of plotting cells depend on [meshnum]|, page 14. If string
sch contain symbol .’ then lower quality plot will produced with much low memory
usage. If string sch contain symbol ‘i’ then transparency will be inversed, i.e. higher
become transparent and lower become not transparent. See also [surf3], page 33,
[meshnum], page 14. See Section 5.7.4 [Cloud sample], page 112, for sample code and

picture.
dens3 adat ['sch’=" sval=-1] [MGL command]
dens3 xdat ydat zdat adat ['sch’=" sval=-1| [MGL command]

The function draws density plot for 3d data specified parametrically ali,j,k](x[i,j,k],
v[i,j,k], z[i,j,k]). Density is plotted at slice sVal in direction {‘x’, ‘y’, ‘z’} if sch contain
corresponding symbol (by default, ‘y’ direction is used). If string stI have symbol ‘#
then grid lines are drawn. See also [cont3|, page 34, [contf3], page 35, [dens], page 32,
[grid3], page 35. See Section 5.7.5 [Dens3 sample], page 113, for sample code and

picture.
cont3 vdat adat ['sch’=" sval=-1] [MGL command]
cont3 vdat xdat ydat zdat adat ['sch’=" sval=-1] [MGL command]

The function draws contour plot for 3d data specified parametrically ali,j,k](x[i,j,k],
vli,j.k], z[i,j,k]). Contours are plotted for values specified in array v at slice sVal in
direction {‘x’, ‘y’, ‘2’} if sch contain corresponding symbol (by default, ‘y’ direction
is used). If string sch have symbol ‘#’ then grid lines are drawn. If string sch have
symbol ‘t’ or ‘T’ then contour labels will be drawn below (or above) the contours.
See also [dens3], page 34, [contf3], page 35, [cont], page 32, [grid3], page 35. See

Section 5.7.6 [Cont3 sample], page 114, for sample code and picture.

cont3 adat ['sch’=" sval=-1] [MGL command]

cont3 xdat ydat zdat adat [’sch’=" sval=-1] [MGL command]
The same as previous with vector v of num-th elements equidistantly distributed in
color range. Here num is equal to parameter value in options opt (default is 7).



Chapter 3: MathGL core 35

contf3 vdat adat ['sch’=" sval=-1] [MGL command]
contf3 vdat xdat ydat zdat adat ['sch’=" sval=-1| [MGL command]
The function draws solid (or filled) contour plot for 3d data specified parametrically
ali,j.k|(x[i,j,k], ¥[i,j,k], 2[i,j,k]). Contours are plotted for values specified in array v at
slice sVal in direction {‘x’, ‘y’, ‘z’} if sch contain corresponding symbol (by default,
‘y’ direction is used). If string sch have symbol ‘#’ then grid lines are drawn. See also
[dens3], page 34, [cont3], page 34, [contf], page 32, [grid3], page 35. See Section 5.7.7

[ContF3 sample|, page 114, for sample code and picture.

contf3 adat ['sch’=" sval=-1] [MGL command]

contf3 xdat ydat zdat adat ['sch’=" sval=-1| [MGL command]
The same as previous with vector v of num-th elements equidistantly distributed in
color range. Here num is equal to parameter value in options opt (default is 7).

grid3 adat [’sch’=" sval=-1] [MGL command]

grid3 xdat ydat zdat adat [’sch’=" sval=-1] [MGL command]
The function draws grid for 3d data specified parametrically a[i,j,k](x[i,j,k], v[i.j,k],
z[i,j,k]). Grid is plotted at slice sVal in direction {‘x’, ‘y’, ‘2’} if sch contain corre-
sponding symbol (by default, ‘y’ direction is used). See also [cont3], page 34, [contf3],
page 35, [dens3], page 34, [grid2], page 33, [meshnum]|, page 14.

beam tr gl g2 adat rval ['sch’=" flag=0 num=3] [MGL command]
Draws the isosurface for 3d array a at constant values of a=val. This is special kind
of plot for a specified in accompanied coordinates along curve tr with orts g1, g2
and with transverse scale r. Variable flag is bitwise: ‘0x1’ - draw in accompanied
(not laboratory) coordinates; ‘0x2’ - draw projection to p — z plane; ‘0x4’ - draw
normalized in each slice field. The x-size of data arrays tr, g1, g2 must be nx>2. The
y-size of data arrays tr, g1, g2 and z-size of the data array a must be equal. See also
[surf3], page 33.

3.13 Dual plotting

These plotting functions draw two matriz simultaneously. There are 5 generally different
types of data representations: surface or isosurface colored by other data (SurfC, Surf3C),
surface or isosurface transpared by other data (SurfA, Surf3A), tiles with variable size
(TileS), mapping diagram (Map), STFA diagram (STFA). By default (if absent) values of
X, v, z are equidistantly distributed in axis range. The minor dimensions of arrays x, y, z,
¢ should be equal. Arrays x, y (and z for Surf3C, Surf3A) can be vectors (not matrices as
c). String sch sets the color scheme (see Section 2.4 [Color scheme], page 6) for plot. String
opt contain command options (see Section 2.7 [Command options|, page 10).

surfc zdat cdat ['sch’=" [MGL command]

surfc xdat ydat zdat cdat [’sch’=" [MGL command]
The function draws surface specified parametrically {x[i,j], y[i,j], z[i,j]} and color it by
matrix c[i,j]. If string sch have symbol ‘#’ then grid lines are drawn. If string sch have
symbol ‘.’ then plot by dots is produced. All dimensions of arrays z and ¢ must be
equal. Surface is plotted for each z slice of the data. See also [surf], page 31, [surfa],
page 36, [surf3c], page 36. See Section 5.6.2 [SurfC sample], page 98, for sample code
and picture.



Chapter 3: MathGL core 36

surf3c adat cdat val [’sch’=" [MGL command]

surf3c xdat ydat zdat adat cdat val [’sch’=" [MGL command]
The function draws isosurface plot for 3d array specified parametrically ali,j,k](x[i,j,k],
yvli,j.k], z[i,j,k]) at a(x,y,z)=val. It is mostly the same as [surf3], page 33 function but
the color of isosurface depends on values of array c. If string sch contain ‘#’ then wire
plot is produced. If string sch have symbol ‘.’ then plot by dots is produced. See also
[surf3], page 33, [surfc], page 35, [surf3a], page 36. See Section 5.7.2 [Surf3C sample],
page 110, for sample code and picture.

surf3c adat cdat [’sch’=" [MGL command]

surf3c xdat ydat zdat adat cdat ['sch’=" [MGL command]
Draws num-th uniformly distributed in color range isosurfaces for 3d data. Here num
is equal to parameter value in options opt (default is 3).

surfa zdat cdat ['sch’=" [MGL command]

surfa xdat ydat zdat cdat [’sch’="] [MGL command]
The function draws surface specified parametrically {x[i,j], y[i,j], 2[i,j]} and trans-
parent it by matrix c[i,j]. If string sch have symbol ‘#’ then grid lines are drawn. If
string sch have symbol ‘.’ then plot by dots is produced. All dimensions of arrays z
and ¢ must be equal. Surface is plotted for each z slice of the data. See also [surf],
page 31, [surfc], page 35, [surf3al, page 36. See Section 5.6.3 [SurfA sample], page 99,
for sample code and picture.

surf3a adat cdat val ['sch’="] [MGL command]

surf3a xdat ydat zdat adat cdat val [’sch’=" [MGL command]
The function draws isosurface plot for 3d array specified parametrically ali,j,k](x[i,j,k],
yv[i,j.k], z[i,j,k]) at a(x,y,z)=val. It is mostly the same as [surf3], page 33 function but
the color of isosurface depends on values of array c. If string sch contain ‘#’ then wire
plot is produced. If string sch have symbol ‘.’ then plot by dots is produced. See also
[surf3], page 33, [surfc], page 35, [surf3al], page 36. See Section 5.7.3 [Surf3A sample],
page 111, for sample code and picture.

surf3a adat cdat [’sch’=" [MGL command]

surf3a xdat ydat zdat adat cdat ['sch’=" [MGL command]
Draws num-th uniformly distributed in color range isosurfaces for 3d data. At this
array ¢ can be vector with values of transparency and num=c.nx. In opposite case
num is equal to parameter value in options opt (default is 3).

tiles zdat rdat ['sch’=" [MGL command]

tiles xdat ydat zdat rdat [’sch’="] [MGL command]
The function draws horizontal tiles for surface specified parametrically {x[i,j], y[i,j],
z[1,j]}. It is mostly the same as [tile], page 31 but the size of tiles is determined by
r array. This is some kind of “transparency” useful for exporting to EPS files. Tiles
is plotted for each z slice of the data. See also [surfa], page 36, [tile], page 31. See
Section 5.6.9 [TileS sample], page 103, for sample code and picture.

map udat vdat [’sch’=" [MGL command]
map xdat ydat udat vdat ['sch’="] [MGL command]
The function draws mapping plot for matrices {ax, ay } which parametrically depend
on coordinates x, y. The initial position of the cell (point) is marked by color. Height



Chapter 3: MathGL core 37

is proportional to Jacobian(ax,ay). This plot is like Arnold diagram 7?7 If string
sch contain symbol ‘.’ then the color ball at matrix knots are drawn otherwise face
is drawn. See Section 5.9.9 [Mapping visualization|, page 135, for sample code and

picture.
stfa re im dn [’sch’=" [MGL command]
stfa xdat ydat re im dn [’sch’=" [MGL command]
Draws spectrogram of complex array re+i*im for Fourier size of dn points at plane
z=Min.z. For example in 1D case, result is density plot of data res|i, j] = | 2% neap(I

Jxd)x (re[i xdn + d] + I * im[i * dn + d])|/dn with size {int(nx/dn), dn, ny}. At
this array re, im parametrically depend on coordinates x, y. The size of re and im
must be the same. The minor dimensions of arrays x, y, re should be equal. Arrays
x, y can be vectors (not matrix as re). See Section 5.9.8 [STFA sample|, page 134,
for sample code and picture.

3.14 Vector fields

These functions perform plotting of 2D and 3D vector fields. There are 5 generally different
types of vector fields representations: simple vector field (Vect), vectors along the curve
(Traj), vector field by dew-drops (Dew), flow threads (Flow, FlowP), flow pipes (Pipe).
By default (if absent) values of x, y, z are equidistantly distributed in axis range. The
minor dimensions of arrays x, y, z, ax should be equal. The size of ax, ay and az must be
equal. Arrays x, y, z can be vectors (not matrices as ax). String sch sets the color scheme
(see Section 2.4 [Color scheme|, page 6) for plot. String opt contain command options (see
Section 2.7 [Command options|, page 10).

traj xdat ydat udat vdat [’sch’=" [MGL command]

traj xdat ydat zdat udat vdat wdat [’sch’=" [MGL command]
The function draws vectors {ax, ay, az} along a curve {x, y, z}. The length of arrows
are proportional to \/{ax?+ay®+az?}. String pen specifies the color (see Section 2.3
[Line styles|, page 5). By default (pen="") color from palette is used (see Section 3.2.7
[Palette and colors], page 15). Option value set the vector length factor (if non-zero)
or vector length to be proportional the distance between curve points (if value=0).
The minor sizes of all arrays must be equal and large 2. The plots are drawn for each
row if one of the data is the matrix. See also [vect], page 37. See Section 5.8.3 [Traj
sample], page 121, for sample code and picture.

vect udat vdat [’sch’=" [MGL command]
vect xdat ydat udat vdat [’sch’=" [MGL command]
The function draws plane vector field plot for the field {ax, ay} depending paramet-
rically on coordinates x, y at level z=Min.z. The length and color of arrows are
proportional to v/{ax?+ay®}. The number of arrows depend on [meshnum]|, page 14.
The appearance of the hachures (arrows) can be changed by symbols:
e ‘f’ for drawing arrows with fixed lengths,
e >’ < for drawing arrows to or from the cell point (default is centering),
e ‘.’ for drawing hachures with dots instead of arrows,

e ‘=’ for enabling color gradient along arrows.



Chapter 3: MathGL core 38

See also [flow], page 38, [dew], page 38. See Section 5.8.1 [Vect sample], page 120, for
sample code and picture.

vect udat vdat wdat [’sch’=" [MGL command]
vect xdat ydat zdat udat vdat wdat [’sch’="] [MGL command]
This is 3D version of the first functions. Here arrays ax, ay, az must be 3-ranged
tensors with equal sizes and the length and color of arrows is proportional to \/{ax?+

ay® + az*}.
vect3 udat vdat wdat ['sch’=" sval] [MGL command]
vect3 xdat ydat zdat udat vdat wdat [’sch’="" svall [MGL command]

The function draws 3D vector field plot for the field {ax, ay, az} depending para-
metrically on coordinates x, y, z. Vector field is drawn at slice sVal in direction {‘x’,
‘y’, ‘z’} if sch contain corresponding symbol (by default, ‘y’ direction is used). The
length and color of arrows are proportional to \/{az? + ay® + az?}. The number of
arrows depend on [meshnum|, page 14. The appearance of the hachures (arrows) can

be changed by symbols:
e ‘f’ for drawing arrows with fixed lengths,
e >’ < for drawing arrows to or from the cell point (default is centering),
e ‘.’ for drawing hachures with dots instead of arrows,

e ‘=’ for enabling color gradient along arrows.

See also [vect], page 37, [flow], page 38, [dew], page 38. See Section 5.8.2 [Vect3
sample], page 121, for sample code and picture.

dew udat vdat [’sch’=" [MGL command]

dew xdat ydat udat vdat [’sch’="] [MGL command]
The function draws dew-drops for plane vector field {ax, ay} depending parametri-
cally on coordinates x, y at level z=Min.z. Note that this is very expensive plot in
memory usage and creation time! The color of drops is proportional to \/{az?+ay?}.
The number of drops depend on [meshnum]|, page 14. See also [vect], page 37. See
Section 5.8.6 [Dew sample|, page 124, for sample code and picture.

flow udat vdat [’sch’=" [MGL command]

flow xdat ydat udat vdat ['sch’=" [MGL command]
The function draws flow threads for the plane vector field {ax, ay} parametrically
depending on coordinates x, y at level z = Min.z. Number of threads is proportional
to value option (default is 5). String sch may contain:

e color scheme — up-half (warm) corresponds to normal flow (like attractor),
bottom-half (cold) corresponds to inverse flow (like source);
e ‘#’ for starting threads from edges only;

e ‘v’ for drawing arrows on the threads;

[ .

e ‘x’ ‘z’ for drawing tapes of normals in x-y and y-z planes correspondingly.

See also [pipe], page 39, [vect]|, page 37, [tape], page 27, [barwidth], page 13. See
Section 5.8.4 [Flow sample|, page 122, for sample code and picture.



Chapter 3: MathGL core 39

flow udat vdat wdat [’sch’="] [MGL command]
flow xdat ydat zdat udat vdat wdat [’sch’=" [MGL command]
This is 3D version of the first functions. Here arrays ax, ay, az must be 3-ranged
tensors with equal sizes and the color of line is proportional to v/{ax? + ay® + az?}.

flow x0 yO udat vdat [’sch’=" [MGL command]

flow x0 yO xdat ydat udat vdat [’sch’=" [MGL command]
The same as first one ([flow]|, page 38) but draws single flow thread starting from
point p0={x0,y0,z0}.

flow x0 yO z0 udat vdat wdat [’sch’="] [MGL command]

flow x0 yO z0 xdat ydat zdat udat vdat wdat [’sch’=" [MGL command]
This is 3D version of the previous functions.

grad pdat ['sch’=" [MGL command]

grad xdat ydat pdat [’sch’=" [MGL command]

grad xdat ydat zdat pdat [’sch’=" [MGL command]

The function draws gradient lines for scalar field phi[i,j] (or phili,j,k] in 3d case)
specified parametrically {x[i,j,k], v[i,j,k], z[i,j,k]}. Number of lines is proportional to
value option (default is 5). See also [dens], page 32, [cont|, page 32, [flow], page 38.

pipe udat vdat [’sch’=" r0=0.05] [MGL command]

pipe xdat ydat udat vdat [’'sch’=" r0=0.05] [MGL command]
The function draws flow pipes for the plane vector field {ax, ay} parametrically
depending on coordinates x, y at level z = Min.z. Number of pipes is proportional
to value option (default is 5). If ‘#’ symbol is specified then pipes start only from
edges of axis range. The color of lines is proportional to v/{az? + ay*}. Warm color
corresponds to normal flow (like attractor). Cold one corresponds to inverse flow (like
source). Parameter r0 set the base pipe radius. If r0<0 or symbol ‘i’ is specified then
pipe radius is inverse proportional to amplitude. The vector field is plotted for each
z slice of ax, ay. See also [flow], page 38, [vect], page 37. See Section 5.8.5 [Pipe
sample], page 123, for sample code and picture.

pipe udat vdat wdat [’'sch’=" r0=0.05] [MGL command]
pipe xdat ydat zdat udat vdat wdat [’sch’=" r0=0.05] [MGL command]
This is 3D version of the first functions. Here arrays ax, ay, az must be 3-ranged
tensors with equal sizes and the color of line is proportional to v/{ax? + ay® + az?}.

3.15 Other plotting

These functions perform miscellaneous plotting. There is unstructured data points plots
(Dots), surface reconstruction (Crust), surfaces on the triangular or quadrangular mesh
(TriPlot, TriCont, QuadPlot), textual formula plotting (Plots by formula), data plots at
edges (Dens[XYZ], Cont[XYZ], ContF[XYZ]). Each type of plotting has similar interface.
There are 2 kind of versions which handle the arrays of data and coordinates or only single
data array. Parameters of color scheme are specified by the string argument. See Section 2.4
[Color scheme], page 6.

densx dat [’sch’=" sval=nan] [MGL command]
densy dat [’sch’=" sval=nan] [MGL command]



Chapter 3: MathGL core 40

densz dat [’sch’=" sval=nan] [MGL command]
These plotting functions draw density plot in x, y, or z plain. If a is a tensor (3-
dimensional data) then interpolation to a given sVal is performed. These functions
are useful for creating projections of the 3D data array to the bounding box. See
also [ContXYZ], page 40, [ContFXYZ], page 40, [dens], page 32, Section 3.17 [Data
manipulation]|, page 42. See Section 5.7.8 [Dens projection sample], page 115, for

sample code and picture.

contx dat [’sch’=" sval=nan] [MGL command]
conty dat [’sch’=" sval=nan] [MGL command]
contz dat ['sch’=" sval=nan)] [MGL command]

These plotting functions draw contour lines in x, y, or z plain. If a is a tensor (3-
dimensional data) then interpolation to a given sVal is performed. These functions
are useful for creating projections of the 3D data array to the bounding box. See
also [ContFXYZ], page 40, [DensXYZ]|, page 39, [cont|, page 32, Section 3.17 [Data
manipulation|, page 42. See Section 5.7.9 [Cont projection sample], page 116, for
sample code and picture.

contfx dat [’sch’=" sval=nan] [MGL command]
contfy dat [’sch’=" sval=nan] [MGL command]
contfz dat [’sch’=" sval=nan] [MGL command]

These plotting functions draw solid contours in x, y, or z plain. If a is a tensor (3-
dimensional data) then interpolation to a given sVal is performed. These functions
are useful for creating projections of the 3D data array to the bounding box. See
also [ContFXYZ], page 40, [DensXYZ], page 39, [cont], page 32, Section 3.17 [Data
manipulation], page 42. See Section 5.7.10 [ContF projection sample], page 116, for
sample code and picture.

fplot ’y(x)’ [pen’=" [MGL command]
Draws command function ‘y(x)’ at plane z=Min.z where ‘x’ variable is changed in
xrange. You do not need to create the data arrays to plot it. See also [plot], page 26.

fplot ’x(t) 'y(t)’ 'z(t)’ ['pen’="] [MGL command]
Draws command parametrical curve {‘x(t)’, ‘y(t)’, ‘z(t)’} where ‘t’ variable is
changed in range [0, 1]. You do not need to create the data arrays to plot it. See also
[plot], page 26.

fsurf ’z(x,y) ['sch’=" [MGL command]
Draws command surface for function ‘z(x,y)’ where ‘x’, ‘y’ variable are changed in
xrange, yrange. You do not need to create the data arrays to plot it. See also [surf],

page 31.

fsurf x(u,v)’ y(u,v)’ z(u,v)’ ['sch’=" [MGL command]
Draws command parametrical surface {‘x(u,v)’, ‘y(u,v)’, ‘z(u,v)’} where ‘u’, ‘v’
variable are changed in range [0, 1]. You do not need to create the data arrays to

plot it. See also [surf], page 31.

triplot idat xdat ydat [’sch’=" [MGL command]
triplot idat xdat ydat zdat ['sch’=" [MGL command]



Chapter 3: MathGL core 41

triplot idat xdat ydat zdat cdat ['sch’=" [MGL command]
The function draws the surface of triangles. Triangle vertexes are set by indexes id of
data points {x[i], y[i], z[i]}. String sch sets the color scheme. If string contain ‘#’ then
wire plot is produced. First dimensions of id must be 3 or greater. Arrays x, y, z must
have equal sizes. Parameter ¢ set the colors of triangles (if id.ny=c.nx) or colors of
vertexes (if x.nx=c.nx). See also [dots], page 41, [crust], page 41, [quadplot], page 41,
[triangulation], page 54. See Section 5.7.11 [TriPlot and QuadPlot], page 117, for
sample code and picture.

tricont vdat idat xdat ydat zdat cdat [’sch’=" [MGL command]

tricont vdat idat xdat ydat zdat [’sch’="] [MGL command]

tricont idat xdat ydat zdat ['sch’=" [MGL command]
The function draws contour lines for surface of triangles at z=v[k] (or at z = Min.z
if sch contain symbol ‘_"). Triangle vertexes are set by indexes id of data points
{x[i], ¥[i], z[i]}. Contours are plotted for z[i,jj]=v[k] where v[k] are values of data
array v. String sch sets the color scheme. Array c (if specified) is used for contour
coloring. First dimensions of id must be 3 or greater. Arrays x, y, z must have equal
sizes. Parameter c set the colors of triangles (if id.ny=c.nx) or colors of vertexes (if
x.nx=c.nx). See also [triplot], page 40, [cont], page 32, [triangulation], page 54.

quadplot idat xdat ydat [’sch’=" [MGL command]
quadplot idat xdat ydat zdat [’sch’=" [MGL command]
quadplot idat xdat ydat zdat cdat [’sch’=" [MGL command]

The function draws the surface of quadrangles. Quadrangles vertexes are set by
indexes id of data points {x[i], y[i], z[i]}. String sch sets the color scheme. If string
contain ‘#’ then wire plot is produced. First dimensions of id must be 4 or greater.
Arrays x, y, z must have equal sizes. Parameter ¢ set the colors of quadrangles
(if id.ny=c.nx) or colors of vertexes (if x.nx=c.nx). See also [triplot|, page 40. See
Section 5.7.11 [TriPlot and QuadPlot], page 117, for sample code and picture.

dots xdat ydat zdat [’sch’=" [MGL command]

dots xdat ydat zdat adat [’sch’=" [MGL command]
The function draws the arbitrary placed points {x[i], y]i], z[i]}. String sch sets the
color scheme. If array a is specified then it define colors of dots. Arrays x, y, z, a
must have equal sizes. See also [crust], page 41, [mark]|, page 29, [plot], page 26. See
Section 5.7.12 [Dots sample], page 118, for sample code and picture.

crust xdat ydat zdat [’sch’="] [MGL command]
The function reconstruct and draws the surface for arbitrary placed points {x[i], y[i],
z[i]}. String sch sets the color scheme. If string contain ‘#’ then wire plot is produced.
Arrays x, y, z must have equal sizes. See also [dots], page 41, [triplot], page 40.

3.16 Nonlinear fitting

These functions fit data to formula. Fitting goal is to find formula parameters for the best fit
the data points, i.e. to minimize the sum Y,(f(z;, vi, 2:) — a;)?/s?. At this, approximation
function ‘f’ can depend only on one argument ‘x’ (1D case), on two arguments ‘x,y’ (2D
case) and on three arguments ‘x,y,z’ (3D case). The function ‘f’ also may depend on
parameters. Normally the list of fitted parameters is specified by var string (like, ‘abcd’).



Chapter 3: MathGL core 42

Usually user should supply initial values for fitted parameters by ini variable. But if he/she
don’t supply it then the zeros are used. Parameter print=true switch on printing the found
coefficients to Message (see Section 3.2.8 [Error handling], page 15).

Functions Fit() and FitS() do not draw the obtained data themselves. They fill the data
fit by formula ‘£’ with found coefficients and return it. At this, the ‘x,y,z’ coordinates are
equidistantly distributed in the axis range. Number of points in fit is selected as maximal
value of fit size and the value of mglFitPnts. Note, that this functions use GSL library
and do something only if MathGL was compiled with GSL support. See Section 5.9.11
[Nonlinear fitting sample], page 137, for sample code and picture.

fits res adat sdat func’ 'var’ [ini=0] [MGL command]

fits res xdat adat sdat 'func’ 'var’ [ini=0) [MGL command]

fits res xdat ydat adat sdat 'func’ 'var’ [ini=0] [MGL command]

fits res xdat ydat zdat adat sdat 'func’ 'var’ [ini=0] [MGL command]
Fit data along x-, y- and z-directions for array specified parametrically ali,j,k](x[i,j,k],
vli,jk], z[i,j,k]) with weight factor s[i,j,k].

fit res adat sdat ‘func’ var’ [ini=0) [MGL command]

fit res xdat adat sdat ’func’ var’ [ini=0] [MGL command]

fit res xdat ydat adat sdat ‘func’ 'var’ [ini=0] [MGL command]

fit res xdat ydat zdat adat sdat ’func’ var’ [ini=0) [MGL command]
Fit data along x-, y- and z-directions for array specified parametrically ai,j,k](x[i,j,k],
v[i,j,k], z[i,j,k]) with weight factor 1.

putsfit x y [pre’=" 'fmt'=" size=-1] [MGL command]
Print last fitted formula with found coefficients (as numbers) at position p0. The
string prefix will be printed before formula. All other parameters are the same as in
Section 3.7 [Text printing], page 23.

3.17 Data manipulation

hist RES xdat adat [MGL command]
hist RES xdat ydat adat [MGL command]
hist RES xdat ydat zdat adat [MGL command]

These functions make distribution (histogram) of data. They do not draw the ob-
tained data themselves. These functions can be useful if user have data defined for
random points (for example, after PIC simulation) and he want to produce a plot
which require regular data (defined on grid(s)). The range for grids is always selected
as axis range. Arrays x, y, z define the positions (coordinates) of random points.
Array a define the data value. Number of points in output array res is selected as
maximal value of res size and the value of mglFitPnts.

fill dat ’eq’ [MGL command]
fill dat ’eq’ vdat [MGL command]
f£ill dat ’eq’ vdat wdat [MGL command]

Fills the value of array ‘v’ according to the formula in string eq. Formula is an

arbitrary expression depending on variables ‘x’, ‘y’, ‘2’, ‘u’, ‘v’, ‘w’. Coordinates ‘x’,

(o) (5

y’, ‘2’ are supposed to be normalized in axis range. Variable ‘u’ is the original value



Chapter 3: MathGL core 43

of the array. Variables ‘v’ and ‘w’ are values of arrays v, w which can be NULL (i.e.
can be omitted).

datagrid dat xdat ydat zdat [MGL command]
Fills the value of array ‘u’ according to the linear interpolation of triangulated surface,
found for arbitrary placed points ‘x’, ‘y’, ‘z’. Interpolation is done at points equidis-
tantly distributed in axis range. NAN value is used for grid points placed outside of

triangulated surface.

pde RES ’ham’ ini_re ini_im [dz=0.1 k0=100] [MGL command]
Solves equation du/dz = i*k0*ham(p,q,x,y,2,lul)[u], where p=-i/k0*d/dx,
q=-i/k0*d/dy are pseudo-differential operators. Parameters ini_re, ini_im specify
real and imaginary part of initial field distribution. Coordinates ‘x’, ‘y’, ‘z’ are
supposed to be normalized in axis range. Note, that really this ranges are increased
by factor 3/2 for purpose of reducing reflection from boundaries. Parameter dz
set the step along evolutionary coordinate z. At this moment, simplified form of
function ham is supported — all “mixed” terms (like ‘x*p’->x*d/dx) are excluded.
For example, in 2D case this function is effectively ham = f(p,z) + g(z, z,u).
However commutable combinations (like ‘x*q’->x*d/dy) are allowed. Here variable
‘w’ is used for field amplitude |ul. This allow one solve nonlinear problems — for
example, for nonlinear Shrodinger equation you may set ham="p~2 + q~2 - u~2".
You may specify imaginary part for wave absorption, like ham = "p~2 + i*x* (x>0)",
but only if dependence on variable ‘i’ is linear (i.e. ham = hre + i * him). See
Section 5.9.12 [PDE solving hints|, page 138, for sample code and picture.



Chapter 4: Data processing 44

4 Data processing

This chapter describe commands for allocation, resizing, loading and saving, modifying of
data arrays. Also it can numerically differentiate and integrate data, interpolate, fill data by
formula and so on. Class supports data with dimensions up to 3 (like function of 3 variables
- x,y,z). Data arrays are denoted by Small Caps (like DAT) if it can be (re-)created by MGL
commands.

4.1 Public variables

MGL don’t support direct access to data arrays. See section Section 4.4 [Data filling],
page 45

4.2 Data constructor

There are many functions, which can create data for output (see Section 4.4 [Data fill-
ing], page 45, Section 4.5 [File I/0], page 47, Section 4.6 [Make another datal, page 48,

9

Section 4.11 [Global functions|, page 53). Here I put most useful of them.

new DAT [nx=1 ‘eq]] [MGL command]
new DAT nx ny [‘eq] [MGL command]
new DAT nx ny nz [‘eq] [MGL command]

Default constructor. Allocates the memory for data array and initializes it by zero.
If string eq is specified then data will be filled by corresponding formula as in [fill],

page 46.
copy DAT dat2 ['eq’="] [MGL command]
copy DAT val [MGL command]

Copy constructor. Allocates the memory for data array and copy values from other
array. At this, if parameter eq is specified then the data will be modified by corre-
sponding formula similarly to [fill], page 46.

read DAT ’fname’ [MGL command]
Reads data from tab-separated text file with auto determining sizes of the data.

delete dat [MGL command]
Deletes the instance of class mglData.

4.3 Data resizing

new DAT [nx=1 ny=1 nz=1] [MGL command]
Creates or recreates the array with specified size and fills it by zero. This function
does nothing if one of parameters mx, my, mz is zero or negative.

rearrange dat mx [my=0 mz=0| [MGL command]
Rearrange dimensions without changing data array so that resulting sizes should be
mx*my*mz < nx*ny*nz. If some of parameter my or mz are zero then it will be
selected to optimal fill of data array. For example, if my=0 then it will be change to
my=nx*ny*nz/mx and mz=1.



Chapter 4: Data processing 45

transpose dat ['dim’="yxz]| [MGL command|]
Transposes (shift order of) dimensions of the data. New order of dimensions is spec-
ified in string dim. This function can be useful also after reading of one-dimensional
data.

extend dat nl [n2=0] [MGL command]
Increase the dimensions of the data by inserting new (|nl|+1)-th slices after (for
nl1>0) or before (for n1<0) of existed one. It is possible to insert 2 dimensions si-
multaneously for 1d data by using parameter n2. Data to new slices is copy from
existed one. For example, for n1>0 new array will be af* = a¢'* where j=0...n1.
Correspondingly, for n1<0 new array will be a7 = a;?ld where i=0...|nl1|.

squeeze dat rx [ry=1 rz=1 sm=0ff] [MGL command]
Reduces the data size by excluding data elements which indexes are not divisible by

rx, ry, rz correspondingly. Parameter smooth set to use smoothing (i.e. @u[i] =
Y jiitr 0lj]/T) or not (i.e. aouli] = alj * 7]).

crop dat nl n2 ‘dir’ [MGL command]
Cuts off edges of the data i<nl and i>n2 if n2>0 or i>n[xyz]-n2 if n2<=0 along
direction dir.

insert dat 'dir’ [pos=off num=0] [MGL command]
Insert num slices along dir-direction at position pos and fill it by zeros.

delete dat 'dir’ [pos=off num=0] [MGL command]
Delete num slices along dir-direction at position pos.

sort dat idx [idy=-1] [MGL command]
Sort data rows (or slices in 3D case) by values of specified column idx (or cell {idx,idy }
for 3D case). Note, this function is not thread safe!

clean dat idx [MGL command]
Delete rows which values are equal to next row for given column idx.

join dat vdat [MGL command]
Join data cells from vdat to dat. At this, function increase dat sizes according fol-
lowing: z-size for 3D data arrays arrays with equal x-,y-sizes; or y-size for 2D data
arrays with equal x-sizes; or x-size otherwise.

4.4 Data filling

list par vl ... [MGL command]
Creates new variable with name dat and fills it by numeric values of command ar-
guments v1 .... Command can create one-dimensional and two-dimensional arrays

with arbitrary values. For creating 2d array the user should use delimiter ‘|’ which
means that the following values lie in next row. Array sizes are [maximal of row sizes
* number of rows|. For example, command 1list 1 | 2 3 creates the array [1 0; 2 3.
Note, that the maximal number of arguments is 1000.



Chapter 4: Data processing 46

list pAT dI ... [MGL command]
Creates new variable with name dat and fills it by data values of arrays of command
arguments dI .... Command can create two-dimensional or three-dimensional (if ar-

rays in arguments are 2d arrays) arrays with arbitrary values. Minor dimensions of all
arrays in arguments should be equal to dimensions of first array d1. In the opposite
case the argument will be ignored. Note, that the maximal number of arguments is
1000.

var DAT num v1 [v2=nan)] [MGL command]
Creates new variable with name dat for one-dimensional array of size num. Array
elements are equidistantly distributed in range [v1, v2|. If v2=nan then v2=vl is

used.
£ill dat vl v2 ['dir'="x]] [MGL command]
Equidistantly fills the data values to range [v1, v2| in direction dir={‘x’,‘y’,‘2’}.
fill dat ’eq’ [MGL command]
fill dat ’eq’ vdat [MGL command]
f£ill dat ’eq’ vdat wdat [MGL command]

Fills the value of array according to the formula in string eq. Formula is an arbitrary
expression depending on variables ‘x’; ‘y’, ‘z’, ‘u’, ‘v’, ‘w’. Coordinates ‘x’, ‘y’, ‘2’
are supposed to be normalized in axis range of canvas gr (in difference from Modify
functions). Variable ‘u’ is the original value of the array. Variables ‘v’ and ‘w’ are

values of vdat, wdat which can be NULL (i.e. can be omitted).

modify dat ’eq’ [dim=0] [MGL command]
modify dat ’eq’ vdat [MGL command]
modify dat ’eq’ vdat wdat [MGL command]

() (o)

The same as previous ones but coordinates ‘x’, ‘y’, ‘z’ are supposed to be normalized
in range [0,1]. If dim>0 is specified then modification will be fulfilled only for slices
>=dim.

fillsample dat 'how’ [MGL command]
Fills data by 'x” or 'k’ samples for Hankel (’h’) or Fourier (’f’) transform.

datagrid dat xdat ydat zdat [MGL command]
Fills the value of array according to the linear interpolation of triangulated surface,

found for arbitrary placed points ‘x’, ‘y’, ‘z’. NAN value is used for grid points placed
outside of triangulated surface.

put dat val [i=: j=: k=:] [MGL command]
Sets value(s) of array a[i, j, k] = val. Negative indexes i, j, k=-1 set the value val
to whole range in corresponding direction(s). For example, Put (val,-1,0,-1); sets
a[i,0,j]=val for i=0...(nx-1), j=0...(nz-1).

put dat vdat [i=: j=: k=:] [MGL command]
Copies value(s) from array v to the range of original array. Negative indexes I, j,
k=-1 set the range in corresponding direction(s). At this minor dimensions of array
v should be large than corresponding dimensions of this array. For example, Put (v, -
1,0,-1); sets a[i,0,j]=v.ny>nz ? v[i,j] : v[i], where i=0...(nx-1), j=0...(nz-1) and
condition v.nx>=nx is true.



Chapter 4: Data processing 47

idset dat ’ids’ [MGL command]

Sets the symbol ids for data columns. The string should contain one symbol ’a’...’z
per column. These ids are used in [column], page 48.

4.5 File 1/0

read DAT ’fname’ [MGL command]
Reads data from tab-separated text file with auto determining sizes of the data.
Double newline means the beginning of new z-slice.

read DAT ’fname’ mx [my=1 mz=1] [MGL command]
Reads data from text file with specified data sizes. This function does nothing if one
of parameters mx, my or mz is zero or negative.

readmat DAT ’fname’ [dim=2] [MGL command]
Read data from text file with size specified at beginning of the file by first dim
numbers. At this, variable dim set data dimensions.

readall DAT ’templ’ vl v2 [dv=1 slice=0ff] [MGL command]
Join data arrays from several text files. The file names are determined by function
call sprintf (fname,templ,val) ;, where val changes from from to to with step step.
The data load one-by-one in the same slice if as_slice=false or as slice-by-slice if
as_slice=true.

readall DAT ’templ’ [slice=off] [MGL command]
Join data arrays from several text files which filenames satisfied the template templ
(for example, templ="t_x.dat"). The data load one-by-one in the same slice if
as_slice=false or as slice-by-slice if as_slice=true.

save dat 'fname’ [MGL command]
Saves the whole data array (for ns=-1) or only ns-th slice to text file.

readhdf DAT ’fname’ ‘dname’ [MGL command]
Reads data array named dname from HDF5 or HDF4 file. This function does nothing
if HDF5|HDF4 was disabled during library compilation.

savehdf dat 'fname’ ’dname’ [MGL command]
Saves data array named dname to HDF5 file. This function does nothing if HDF5
was disabled during library compilation.

datas ’fname’ [MGL command]
Put data names from HDF5 file fname into buf as '\t’ separated fields. In MGL
version the list of data names will be printed as message. This function does nothing
if HDF5 was disabled during library compilation.

import DAT ’fname’ ’sch’ [v1=0 v2=1] [MGL command]
Reads data from bitmap file (now support only PNG format). The RGB values of
bitmap pixels are transformed to mreal values in range [v1, v2] using color scheme
scheme (see Section 2.4 [Color scheme], page 6).



Chapter 4: Data processing 48

export dat fname’ ’sch’ [v1=0 v2=0| [MGL command]
Saves data matrix (or ns-th slice for 3d data) to bitmap file (now support only PNG
format). The data values are transformed from range [v1, v2] to RGB pixels of bitmap
using color scheme scheme (see Section 2.4 [Color scheme], page 6). If vI>=v2 then
the values of v1, v2 are automatically determined as minimal and maximal value of
the data array.

4.6 Make another data

subdata RES dat xx [yy=: zz=:] [MGL command]
Extracts sub-array data from the original data array keeping fixed positive index. For
example SubData(-1,2) extracts 3d row (indexes are zero based), SubData(4,-1)
extracts 5th column, SubData(-1,-1,3) extracts 4th slice and so on. If argument(s)
are non-integer then linear interpolation between slices is used. In MGL version this
command usually is used as inline one dat (xx,yy,zz).

subdata RES dat xdat [ydat=: zdat=:] [MGL command]
Extracts sub-array data from the original data array for indexes specified by arrays
xx, yy, zz (indirect access). This function work like previous one for 1D arguments
or numbers, and resulting array dimensions are equal dimensions of 1D arrays for
corresponding direction. For 2D and 3D arrays in arguments, the resulting array
have the same dimensions as input arrays. The dimensions of all argument must be
the same (or to be scalar 1*¥1*1) if they are 2D or 3D arrays. In MGL version this
command usually is used as inline one dat (xx,yy,zz).

column RES dat ‘eq’ [MGL command]
Get column (or slice) of the data filled by formula eq on column ids. For example,
Column("n*w~2/exp(t)") ;. The column ids must be defined first by [idset]|, page 47
function or read from files. In MGL version this command usually is used as inline
one dat(’eq’).

resize RES dat mx [my=1 mz=1] [MGL command]
Resizes the data to new size mx, my, mz from box (part) [x1,x2] x [yl,y2] x [z1,22]
of original array. Initially x,y,z coordinates are supposed to be in [0,1].

evaluate RES dat idat [norm=on] [MGL command]
evaluate RES dat idat jdat [norm=on] [MGL command]
evaluate RES dat idat jdat kdat [norm=on)] [MGL command]

Gets array which values is result of interpolation of original array for coordinates from
other arrays. All dimensions must be the same for data idat, jdat, kdat. Coordinates
from idat, jdat, kdat are supposed to be normalized in range [0,1] (if norm=true) or
in ranges [0,nx], [0,ny], [0,nz] correspondingly.

solve RES dat val ’'dir’ [norm=on)] [MGL command]
solve RES dat val ’dir’ idat [norm=on] [MGL command]
Gets array which values is indexes (roots) along given direction dir, where interpolated
values of data dat are equal to val. Output data will have the sizes of dat in directions
transverse to dir. If data idat is provided then its values are used as starting points.
This allows to find several branches by consequentive calls. Indexes are supposed



Chapter 4: Data processing 49

to be normalized in range [0,1] (if norm=true) or in ranges [0,nx], [0,ny], [0,nz]
correspondingly. See [Solve sample], page 74, for sample code and picture.

hist RES dat num v1 v2 [nsub=0] [MGL command|]

hist RES dat wdat num v1 v2 [nsub=0] [MGL command]
Creates n-th points distribution of the data values in range [v1, v2]. Array w specifies
weights of the data elements (by default is 1). Parameter nsub define the number of
additional interpolated points (for smoothness of histogram). See also Section 3.17
[Data manipulation], page 42

momentum RES dat ’how’ ['dir'="z" [MGL command]
Gets momentum (1d-array) of the data along direction dir. String how contain kind
of momentum. The momentum is defined like as res, = >, how(w;, y;, 21)ai;/ >, @ij
if dir=‘z’ and so on. Coordinates ‘x’, ‘y’, ‘2z’ are data indexes normalized in range

[0,1].

sum RES dat 'dir’ [MGL command]
Gets array which is the result of summation in given direction or direction(s).

max RES dat 'dir’ [MGL command]
Gets array which is the maximal data values in given direction or direction(s).

min RES dat 'dir’ [MGL command]
Gets array which is the maximal data values in given direction or direction(s).

combine RES adat bdat [MGL command]
Returns direct multiplication of arrays (like, res|i,j] = this[i]*a[j] and so on).

trace RES dat [MGL command]
Gets array of diagonal elements a[i,i] (for 2D case) or a[i,i,i] (for 3D case) where
i=0...nx-1. Function return copy of itself for 1D case. Data array must have dimen-
sions ny,nz >= nx or ny,nz = 1.

roots RES func’ ini ['var'="x] [MGL command]

roots RES 'func’ ini [var’="x]] [MGL command]
Find roots of equation 'func’=0 for variable var with initial guess ini. Secant method
is used for root finding.

4.7 Data changing

These functions change the data in some direction like differentiations, integrations and
so on. The direction in which the change will applied is specified by the string parameter,

) lgy?

which may contain ‘x’, ‘y’ or ‘2z’ characters for 1-st, 2-nd and 3-d dimension correspondingly.

cumsum dat 'dir’ [MGL command]
Cumulative summation of the data in given direction or directions.

integrate dat 'dir’ [MGL command]
Integrates (like cumulative summation) the data in given direction or directions.

diff dat 'dir’ [MGL command]
Differentiates the data in given direction or directions.



Chapter 4: Data processing 50

diff dat xdat ydat [zdat=0] [MGL command]
Differentiates the data specified parametrically in direction x with y, z=constant.
Parametrical differentiation uses the formula (for 2D case): da/dx = (a; * y; — a; *
y;)/(x; *y; —x; % y;) where a; = da/di,a; = da/dj denotes usual differentiation along
1st and 2nd dimensions. The similar formula is used for 3D case. Note, that you may
change the order of arguments — for example, if you have 2D data a(i,j) which depend
on coordinates {x(i,j), y(i,j)} then usual derivative along ‘x’ will be Diff (x,y); and
usual derivative along ‘y’ will be Diff (y,x) ;.

diff2 dat 'dir’ [MGL command]
Double-differentiates (like Laplace operator) the data in given direction.

sinfft dat 'dir’ [MGL command]
Do Sine transform of the data in given direction or directions. The Sine transform
is > a;sin(kj) (see http://en.wikipedia.org/wiki/Discrete_sine_transform#

DST-TI).
cosfft dat 'dir’ [MGL command]
Do Cosine transform of the data in given direction or directions. The

Cosine transform is Y a;cos(kj) (see http: / /en . wikipedia . org / wiki /
Discrete_cosine_transform#DCT-I).

hankel dat ’dir’ [MGL command]
Do Hankel transform of the data in given direction or directions. The Hankel trans-
form is > a;Jo(kj) (see http://en.wikipedia.org/wiki/Hankel_transform).

swap dat 'dir’ [MGL command]
Swaps the left and right part of the data in given direction (useful for Fourier spec-
trum).

roll dat 'dir’ num [MGL command]
Rolls the data along direction dir. Resulting array will be out[i] = ini[(i+num)%nx]
if dir="x".

mirror dat 'dir’ [MGL command]

Mirror the left-to-right part of the data in given direction. Looks like change the value
index i->n-i. Note, that the similar effect in graphics you can reach by using options
(see Section 2.7 [Command options|, page 10), for example, surf dat; xrange 1 -1.

sew dat ['dir'="xyz’ da=2*pi] [MGL command]
Remove value steps (like phase jumps after inverse trigonometric functions) with
period da in given direction.

smooth data type ['dir'="xyz] [MGL command]
Smooths the data on specified direction or directions. String dirs specifies the dimen-
sions which will be smoothed. It may contain characters: ‘x’ for 1st dimension, ‘y’
for 2nd dimension, ‘z’ for 3d dimension. If string dir contain: ‘0’ then does nothing,
‘3’ — linear averaging over 3 points, ‘6’ — linear averaging over 5 points. By default
quadratic averaging over 5 points is used.


http://en.wikipedia.org/wiki/Discrete_sine_transform#DST-I
http://en.wikipedia.org/wiki/Discrete_sine_transform#DST-I
http://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-I
http://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-I
http://en.wikipedia.org/wiki/Hankel_transform

Chapter 4: Data processing 51

envelop dat ['dir'="x]] [MGL command]
Find envelop for data values along direction dir.

norm dat vl v2 [sym=off dim=0] [MGL command]
Normalizes the data to range [v1,v2]. If flag sym=true then symmetrical interval
[max(|vll,|v2]), max(|vll,|v2[)] is used. Modification will be applied only for
slices >=dim.

normsl dat vl v2 ['dir'="2" keep=on sym=off| [MGL command]
Normalizes data slice-by-slice along direction dir the data in slices to range [v1,v2].
If flag sym=true then symmetrical interval [-max(|vll,|v2]), max(|vll,|v2])]
is used. If keep_en is set then maximal value of k-th slice will be limited by

VX ais(k)/ X ai;(0).

4.8 Interpolation

MGL scripts can use linear interpolation by [subdatal, page 48 command, or spline inter-
polation by [evaluate|, page 48 command. Also you can use [resize|, page 48 for obtaining
a data array with new sizes.

4.9 Data information

There are a set of functions for obtaining data properties in MGL language. However most
of them can be found using "suffixes". Suffix can get some numerical value of the data
array (like its size, maximal or minimal value, the sum of elements and so on) as number.
Later it can be used as usual number in command arguments. The suffixes start from point
‘.’ right after (without spaces) variable name or its sub-array. For example, a.nx give the
x-size of data a, b(1) .max give maximal value of second row of variable b, (c(:,0)~2) .sum
give the sum of squares of elements in the first column of ¢ and so on.

info dat [MGL command]
Gets or prints to file fp or as message (in MGL) information about the data (sizes,
maximum/minimum, momentums and so on).

info ’txt’ [MGL command]
Prints string txt as message.

info val [MGL command]
Prints value of number val as message.

(dat) .nx [MGL suffix]
(dat) .ny [MGL suffix]
(dat) .nz [MGL suffix]

Gets the x-, y-, z-size of the data.

(dat) .max [MGL suffix]
Gets maximal value of the data.

(dat) .min [MGL suffix]
Gets minimal value of the data.



Chapter 4: Data processing 52

(dat) .mx [MGL suffix]
(dat) .my [MGL suffix]
(dat) .mz [MGL suffix]

Gets approximated (interpolated) position of maximum to variables x, y, z and returns
the maximal value.

(dat) .sum [MGL suffix]
(dat) .ax [MGL suffix]
(dat) .ay [MGL suffix]
(dat) .az [MGL suffix]
(dat) .aa [MGL suffix]
(dat) .wx [MGL suffix]
(dat) .wy [MGL suffix]
(dat) .wz [MGL suffix]
(dat) .wa [MGL suffix]
(dat) .sx [MGL suffix]
(dat) .sy [MGL suffix]
(dat) .sz [MGL suffix]
(dat) .sa [MGL suffix]
(dat) .kx [MGL suffix]
(dat) .ky [MGL suffix]
(dat) .kz [MGL suffix]
(dat) .ka [MGL suffix]

Gets zero-momentum (energy, I = Y dat;) and write first momentum (median, a =
Y- &dat;/I), second momentum (width, w? = >°(& — a)?dat;/I), third momentum
(skewness, s = > (& — a)?dat;/Iw?) and fourth momentum (kurtosis, k = > (& —
a)*dat;/3Tw*) to variables. Here ¢ is corresponding coordinate if dir is *’x?’, “’y’’ or
©7z2’. Otherwise median is a = Y dat; /N, width is w? = 3 (dat; — a)*/N and so on.

(dat) .fst [MGL suffix]
Find position (after specified in i, j, k) of first nonzero value of formula cond. Function
return the data value at found position.

(dat) .1st [MGL suffix]
Find position (before specified in i, j, k) of last nonzero value of formula cond. Func-
tion return the data value at found position.

(dat) .a [MGL suffix]
Give first (for .a, i.e. dat->a[0]).

4.10 Operators

copy DAT dat2 ['eq’=" [MGL command]
Copies data from other variable.

copy dat val [MGL command]
Set all data values equal to val.



Chapter 4: Data processing 53

multo dat dat2 [MGL command]
multo dat val [MGL command]
Multiplies data element by the other one or by value.

divto dat dat2 [MGL command]

divto dat val [MGL command]
Divides each data element by the other one or by value.

addto dat dat2 [MGL command]

addto dat val [MGL command]
Adds to each data element the other one or the value.

subto dat dat2 [MGL command]

subto dat val [MGL command]

Subtracts from each data element the other one or the value.

4.11 Global functions

transform DAT ’type’ real imag [MGL command]
Does integral transformation of complex data real, imag on specified direction. The
order of transformations is specified in string type: first character for x-dimension,
second one for y-dimension, third one for z-dimension. The possible character are:
‘f’ is forward Fourier transformation, ‘i’ is inverse Fourier transformation, ‘s’ is Sine
transform, ‘c’ is Cosine transform, ‘h’ is Hankel transform, ‘n’ or * ’ is no transforma-

tion.

transforma DAT ’type’ ampl phase [MGL command]
The same as previous but with specified amplitude ampl and phase phase of complex
numbers.

fourier reDat imDat “dir’ [MGL command]

Does Fourier transform of complex data re+i*im in directions dir. Result is placed
back into re and im data arrays.

stfad RES real imag dn ['dir'="x]] [MGL command]
Short time Fourier transformation for real and imaginary parts. Output is ampli-
tude of partial Fourier of length dn. For example if dir=‘%’, result will have size
{int(nx/dn), dn, ny} and it will contain res[i,j, k] = | . %nexp(I % j * d) * (real[i

dn +d, k| + I * imag[i * dn + d, k])|/dn.

pde RES ’ham’ ini_re ini_im [dz=0.1 k0=100] [MGL command]
Solves equation du/dz = i*k0*ham(p,q,x,y,2,lul)[u], where p=-i/k0*d/dx,
q=-i/k0*d/dy are pseudo-differential operators. Parameters ini_re, ini_im specify
real and imaginary part of initial field distribution. Parameters Min, Max set
the bounding box for the solution. Note, that really this ranges are increased by
factor 3/2 for purpose of reducing reflection from boundaries. Parameter dz set the
step along evolutionary coordinate z. At this moment, simplified form of function
ham is supported — all “mixed” terms (like ‘x*p’->x*d/dx) are excluded. For
example, in 2D case this function is effectively ham = f(p, z) + g(z, z,u). However



Chapter 4: Data processing 54

commutable combinations (like ‘x*q’->x*d/dy) are allowed. Here variable ‘v’ is used
for field amplitude |u|. This allow one solve nonlinear problems — for example,
for nonlinear Shrodinger equation you may set ham="p~2 + q~2 - u”2". You may
specify imaginary part for wave absorption, like ham = "p~2 + i*x*(x>0)", but only
if dependence on variable ‘i’ is linear (i.e. ham = hre + i x him). See Section 5.9.12
[PDE solving hints], page 138, for sample code and picture.

ray RES 'ham’ x0 yO z0 p0O g0 vO [dt=0.1 tmax=10] [MGL command]
Solves GO ray equation like dr/dt = d ham/dp, dp/dt = -d ham/dr. This is Hamil-
tonian equations for particle trajectory in 3D case. Here ham is Hamiltonian which
may depend on coordinates ‘x’; ‘y’, ‘z’, momentums ‘p’=px, ‘q’=py, ‘v’=pz and time
‘t’: ham = H(z,y, z,p,q,v,t). The starting point (at t=0) is defined by variables r0,
p0. Parameters dt and tmax specify the integration step and maximal time for ray
tracing. Result is array of {x,y,z,p,q,v,t} with dimensions {7 * int(tmax/dt+1) }.

qo2d RES ’ham’ ini_re ini_im ray [r=1 k0=100 xx yy] [MGL command]
Solves equation du/dt = i*k0*ham(p,q,x,y,lul)[u], where p=-i/k0*d/dx, q=-
i/k0*d/dy are pseudo-differential operators (see mglPDE() for details). Parameters
ini_re, ini_im specify real and imaginary part of initial field distribution. Parameters
ray set the reference ray, i.e. the ray around which the accompanied coordinate
system will be maked. You may use, for example, the array created by mglRay ()
function. Note, that the reference ray must be smooth enough to make accompanied
coodrinates unambiguity. Otherwise errors in the solution may appear. If xx and
yy are non-zero then Cartesian coordinates for each point will be written into them.
See also mglPDE(). See Section 5.9.12 [PDE solving hints|, page 138, for sample
code and picture.

jacobian RES xdat ydat [zdat] [MGL command]
Computes the Jacobian for transformation {i,j,k} to {x,y,z} where initial coordinates
{i,j,k} are data indexes normalized in range [0,1]. The Jacobian is determined by
formula det | |dr,/dés| | where r={x,y,z} and {={i,j,k}. All dimensions must be the
same for all data arrays. Data must be 3D if all 3 arrays {x,y,z} are specified or 2D
if only 2 arrays {x,y} are specified.

triangulation RES xdat ydat [MGL command]
Computes triangulation for arbitrary placed points with coordinates {x,y} (i.e. finds
triangles which connect points). MathGL use s-hull code for triangulation. The sizes
of 1st dimension must be equal for all arrays x.nx=y.nx. Resulting array can be used
in [triplot], page 40 or [tricont|, page 41 functions for visualization of reconstructed
surface.

4.12 Evaluate expression

You can use arbitrary formulas of existed data arrays or constants as any argument of data
processing or data plotting commands. There are only 2 limitations: formula shouldn’t con-
tain spaces (to be recognized as single argument), and formula cannot be used as argument
which will be (re)created by MGL command.


http://www.s-hull.org/

Chapter 4: Data processing

4.13 MGL variables
For information about MGL variables see Section 1.1 [MGL definition], page 1.

95



Chapter 5: MathGL examples 56

5 MathGL examples

This chapter contain information about basic and advanced MathGL, hints and samples for
all types of graphics. I recommend you read first 2 sections one after another and at least
look on Section 5.9 [Hints], page 125 section. Also I recommend you to look at Chapter 2
[General concepts], page 4 and Section 5.10 [FAQ], page 145.

Most of sample scripts placed below use a set of functions for preparing the data.

func ’prepareld’

new y 50 3

modify y ’0.7+*sin(2*pi*x)+0.5*%cos(3*pi*x)+0.2*sin(pi*x)’
modify y ’sin(2*pi*x)’ 1

modify y ’cos(2%pi*x)’ 2

new x1 50 ’x’

new x2 50 ’0.05-0.03*cos(pi*x)’

new yl 50 ’0.5-0.3*%cos(pi*x)’

new y2 50 ’-0.3*sin(pi*x)’

return

func ’prepare2d’

new a 50 40 ’0.6*sin(pi*(x+1))*sin(1.5*pi*(y+1))+0.4%cos(0.75xpix(x+1)*(y+1)) |
new b 50 40 ’0.6*cos(pi*(x+1))*cos(1.5*pi*(y+1))+0.4%cos(0.75*pix(x+1)*(y+1)) |
return

func ’prepare3d’

new c 61 50 40 ’-2*(x"2+y~2+z"4-z"2)+0.2’
new d 61 50 40 ’1-2*tanh((x+y)*(x+y))’
return

func ’prepare2v’

new a 20 30 ’0.6*sin(pi*(x+1))*sin(1.5*pi*(y+1))+0.4%cos(0.75xpix(x+1)*(y+1)) |}
new b 20 30 ’0.6*cos(pi*(x+1))*cos(1.5*pi*(y+1))+0.4%cos(0.75*pix(x+1)*(y+1)) |
return

func ’prepare3dv’

define $1 pow(x*x+y*y+(z-0.3)*(z-0.3)+0.03,1.5)
define $2 pow (x*x+y*y+(z+0.3)*(2+0.3)+0.03,1.5)
new ex 10 10 10 ’0.2%x/$1-0.2*xx/$2’

new ey 10 10 10 ’0.2%y/$1-0.2%y/$2’

new ez 10 10 10 ’0.2%(z-0.3)/$1-0.2%(=2+0.3)/$2’
return

Basically, you can put this text after the script. Note, that you need to terminate main
script by [stop], page 3 command before defining a function.

5.1 Basic usage

MGL script can be used by several manners. Fach has positive and negative sides:



Chapter 5: MathGL examples 57

o Using UDAV.

Positive sides are possibilities to view the plot at once and to modify it, rotate, zoom or
switch on transparency or lighting by hands or by mouse. Negative side is the needness
of the X-terminal.

o Using command line tools.

Positive aspects are: batch processing of similar data set, for example, a set of resulting
data files for different calculation parameters), running from the console program, in-
cluding the cluster calculation), fast and automated drawing, saving pictures for further
analysis, or demonstration). Negative sides are: the usage of the external program for
picture viewing. Also, the data plotting is non-visual. So, you have to imagine the pic-
ture, view angles, lighting and so on) before the plotting. I recommend to use graphical
window for determining the optimal parameters of plotting on the base of some typical
data set. And later use these parameters for batch processing in console program.

In this case you can use the program: mglconv or mglview for viewing.
o Using C/C++/... code.

You can easily execute MGL script within C/C++/Fortan code. This can be useful
for fast data plotting, for example, in web applications, where textual string (MGL
script) may contain all necessary information for plot. The basic C++ code may look
as following

const char *mgl_script; // script itself, can be of type const wchar_tx*
mglGraph gr;

mglParse pr;

pr.Execute(&gr, mgl_script);

The simplest script is

box # draw bounding box
axis # draw axis
fplot ’x"3’ # draw some function

Just type it in UDAV and press F5. Also you can save it in text file ‘test.mgl’ and type
in the console mglconv test.mgl what produce file ‘test.mgl.png’ with resulting picture.

5.2 Advanced usage

Now I show several non-obvious features of MGL: several subplots in a single picture,
curvilinear coordinates, text printing and so on. Generally you may miss this section at
first reading, but I don’t recommend it.

5.2.1 Subplots

Let me demonstrate possibilities of plot positioning and rotation. MathGL has a set of
functions: [subplot], page 18, [inplot], page 19, [title], page 19, [aspect], page 20 and [rotate],
page 19 and so on (see Section 3.4 [Subplots and rotation|, page 18). The order of their
calling is strictly determined. First, one changes the position of plot in image area (functions
[subplot|, page 18, [inplot], page 19 and [multiplot]|, page 19). Secondly, you can add the
title of plot by [title], page 19 function. After that one may rotate the plot (command
[rotate], page 19). Finally, one may change aspects of axes (command [aspect], page 20).
The following code illustrates the aforesaid it:



Chapter 5: MathGL examples 58

subplot 2 2 0O

box:text -1 1.1 ’Just box’ ’:L’
inplot 0.2 0.5 0.7 off
box:text 0 1.2 ’InPlot example’

subplot 2 2 1:title ’Rotate only’
rotate 50 60:box

subplot 2 2 2:title ’Rotate and Aspect’
rotate 50 60:aspect 1 1 2:box

subplot 2 2 3:title ’Aspect in other direction’
rotate 50 60:aspect 1 2 2:box

Here I used function Puts for printing the text in arbitrary position of picture (see
Section 3.7 [Text printing], page 23). Text coordinates and size are connected with axes.
However, text coordinates may be everywhere, including the outside the bounding box. I'll
show its features later in Section 5.2.7 [Text features|, page 67.

Note that several commands can be placed in a string if they are separated by ‘:’ symbol.

i e Rotate only

More complicated sample show how to use most of positioning functions:

subplot 3 2 0:title ’StickPlot’

stickplot 3 0 20 30:box ’r’:text 0 0 ’0’ ’r’
stickplot 3 1 20 30:box ’g’:text 0 0 1’ ’g’
stickplot 3 2 20 30:box ’b’:text 0 0 ’2’ ’b’
subplot 3 2 3 ’’:title ’ColumnPlot’
columnplot 3 O:box ’r’:text 0 0 0’ ’r’
columnplot 3 1:box ’g’:text 0 0 ’1’ ’g’



Chapter 5: MathGL examples 59

columnplot 3 2:box ’b’:text 0 0 ’2’ ’b’

subplot 3 2 4 ’’:title ’GridPlot’

gridplot 2 2 0O:box ’r’:text 0 O ’°0’ ’r’
gridplot 2 2 1:box ’g’:text 0 0 ’1’ ’g’
gridplot 2 2 2:box ’b’:text 0 0 ’2’ ’b’
gridplot 2 2 3:box ’m’:text 0 0 ’3’ ’m’

subplot 3 2 5 ’’:title ’InPlot’:box
inplot 0.4 1 0.6 1 on:box ’r’

multiplot 3 2 1 2 1 ’’:title ’MultiPlot’:box

 StickPlot MultiPlot

ColumnPlot GridPlot InPlot

5.2.2 Axis and ticks

MathGL library can draw not only the bounding box but also the axes, grids, labels and so
on. The ranges of axes and their origin (the point of intersection) are determined by func-
tions SetRange (), SetRanges (), SetOrigin() (see Section 3.3.1 [Ranges (bounding box)],
page 15). Ticks on axis are specified by function SetTicks, SetTicksVal, SetTicksTime
(see Section 3.3.3 [Ticks], page 17). But usually

Command [axis], page 24 draws axes. Its textual string shows in which directions the axis
or axes will be drawn (by default "xyz", function draws axes in all directions). Command
[grid], page 25 draws grid perpendicularly to specified directions. Example of axes and grid
drawing is:
subplot 2 2 0:title ’Axis origin, Grid’
origin 0 O:axis:grid:fplot ’x"3’

subplot 2 2 1:title ’2 axis’



Chapter 5: MathGL examples 60

ranges -1 1 -1 l:origin -1 -1:axis
ylabel ’axis_1’:fplot ’sin(pi*x)’ ’r2’
ranges 0 1 O l:origin 1 1:axis

ylabel ’axis_2’:fplot ’cos(pi*x)’

subplot 2 2 3:title ’More axis’

origin nan nan:xrange -1 1l:axis

xlabel ’x’ O:ylabel ’y_1’ O:fplot ’x72° ’k’
yrange -1 1l:origin -1.3 -1l:axis ’y’ ’r’
ylabel ’#r{y_2}’ 0.2:fplot ’x"3’ ’r’

subplot 2 2 2:title ’4 segments, inverted axis’:origin 0 O:
inplot 0.5 1 0.5 1 on:ranges 0 10 0 2:axis

fplot ’sqrt(x/2)’:xlabel ’W’ 1:ylabel U’ 1

inplot 0 0.5 0.5 1 on:ranges 1 0 0 2:axis ’x’

fplot ’sqrt(x)+x~3’:xlabel ’\tau’ 1

inplot 0.5 1 0 0.5 on:ranges 0 10 4 O:axis ’y’

fplot ’x/4’:ylabel L’ -1

inplot 0 0.5 0 0.5 on:ranges 1 0 4 O:fplot ’4%*x"2’

Note, that MathGL can draw not only single axis (which is default). But also several
axis on the plot (see right plots). The idea is that the change of settings does not influence
on the already drawn graphics. So, for 2-axes I setup the first axis and draw everything
concerning it. Then I setup the second axis and draw things for the second axis. Generally,
the similar idea allows one to draw rather complicated plot of 4 axis with different ranges
(see bottom left plot).

At this inverted axis can be created by 2 methods. First one is used in this sample —
just specify minimal axis value to be large than maximal one. This method work well for
2D axis, but can wrongly place labels in 3D case. Second method is more general and work
in 3D case too — just use [aspect], page 20 function with negative arguments. For example,
following code will produce exactly the same result for 2D case, but 2nd variant will look
better in 3D.

# variant 1
ranges 0 10 4 O:axis

# variant 2
ranges O 10 O 4:aspect 1 -1l:axis



Chapter 5: MathGL examples 61

Axis origin, Grid
-1‘..-q5:"‘_._;.LMaZ,‘ :g‘ﬂ
,/./_.? g ls

Another MathGL feature is fine ticks tunning. By default (if it is not changed by
SetTicks function), MathGL try to adjust ticks positioning, so that they looks most human
readable. At this, MathGL try to extract common factor for too large or too small axis
ranges, as well as for too narrow ranges. Last one is non-common notation and can be
disabled by SetTuneTicks function.

Also, one can specify its own ticks with arbitrary labels by help of SetTicksVal function.
Or one can set ticks in time format. In last case MathGL will try to select optimal format
for labels with automatic switching between years, months/days, hours/minutes/seconds or
microseconds. However, you can specify its own time representation using formats described
in http://www.manpagez.com/man/3/strftime/. Most common variants are ‘%X’ for
national representation of time, ‘%x’ for national representation of date, ‘%Y’ for year with
century.

The sample code, demonstrated ticks feature is

subplot 3 2 0:title ’Usual axis’
axis

subplot 3 2 1:title ’Too big/small range’
ranges -1000 1000 0 0.001:axis

subplot 3 2 3:title ’Too narrow range’
ranges 100 100.1 10 10.01:axis

subplot 3 2 4:title ’Disable ticks tuning’
tuneticks off:axis

subplot 3 2 2:title ’Manual ticks’

ranges -pi pi 0 2

xtick -pi ’\pi’ -pi/2 ’-\pi/2’ 0 ’0’ 0.886 ’x"*’ pi/2 ’\pi/2’ pi ’pi’
# or you can use:


http://www.manpagez.com/man/3/strftime/

Chapter 5: MathGL examples 62

#list v -pi -pi/2 0 0.886 pi/2 pi:xtick v ’-\pi\n-\pi/2\n{}0\n{}x"*\n\pi/2\n\pi’[
axis:grid:fplot ’2%cos(x72)72° ’r2’

subplot 3 2 5:title ’Time ticks’
xrange O 3eb:ticktime ’x’:axis

Usual axis Too big/small range Manual ticks

(A

10 x10+

035
8
1.5
s
—

, Il
] ) all

i 1. [ S I A P S |
sl 05 0 05 1 10 -5 0 5 10 x10# x a2 x* xR =

-1

Too narrow range Disable ticks tuning Time ticks

o

2
Z
o
!
|
-
g
|
5 =
Shicad o laadii il SR SR
oo

Llaad Akl . P LRI D
(H0.02) (-H-04) (+0.06) (+0.08) (+0.1) Iy 2t ,, Ity . e uﬁmom 01/03/70 01/04/70
B o, Wg, Bas B 0y

1000, 00,0050 00

i

The last sample I want to show in this subsection is Log-axis. From MathGL’s point
of view, the log-axis is particular case of general curvilinear coordinates. So, we need first
define new coordinates (see also Section 5.2.3 [Curvilinear coordinates|, page 63) by help of
SetFunc or SetCoor functions. At this one should wary about proper axis range. So the
code looks as following:

subplot 2 2 0 ’<_’:title ’Semi-log axis’
ranges 0.01 100 -1 1:axis ’1g(x)’ °’ 7’
axis:grid ’xy’ ’g’:fplot ’sin(1/x)’
xlabel ’x’ O:ylabel ’y = sin 1/x’ O

subplot 2 2 1 ’<_’:title ’Log-log axis’

ranges 0.01 100 0.1 100:axis ’1g(x)’ ’1g(y)’ ?’
axis:fplot ’sqrt(1+x~2)’

xlabel ’x’ O:ylabel ’y = \sqrt{1+x"2}’ 0

subplot 2 2 2 ’<_’:title ’Minus-log axis’

ranges -100 -0.01 -100 -0.1:axis ’-1g(-x)’ ’-1lg(-y)’> ’°
axis:fplot ’-sqrt(1+x~2)°

xlabel ’x’ O:ylabel ’y = -\sqrt{1+x~2}’ 0

subplot 2 2 3 ’<_’:title ’Log-ticks’
ranges 0.01 100 0 100:axis ’sqrt(x)’ ’’ 7’



Chapter 5: MathGL examples 63

axis:fplot ’x’
xlabel ’x’ 1:ylabel ’y = x’ 0

Semi-log axis Log-log axis

10°
|

10
T

y/1+4x2

%}3 104 1 10 102

X
. Log-ticks
2
" 8
Il
S
8 -
?(}11 J.Hluilo. - —
X X

You can see that MathGL automatically switch to log-ticks as we define log-axis formula
(in difference from v.1.*¥). Moreover, it switch to log-ticks for any formula if axis range
will be large enough (see right bottom plot). Another interesting feature is that you not
necessary define usual log-axis (i.e. when coordinates are positive), but you can define
“minus-log” axis when coordinate is negative (see left bottom plot).

5.2.3 Curvilinear coordinates

As I noted in previous subsection, MathGL support curvilinear coordinates. In difference
from other plotting programs and libraries, MathGL uses textual formulas for connection
of the old (data) and new (output) coordinates. This allows one to plot in arbitrary coordi-
nates. The following code plots the line y=0, z=0 in Cartesian, polar, parabolic and spiral
coordinates:

origin -1 1 -1

subplot 2 2 0:title ’Cartesian’:rotate 50 60

fplot ’2%t-1’ 0.5’ ’0’ ’2r’:axis:grid

axis ’y*sin(pi*x)’ ’y*cos(pi*x)’ ’’:
subplot 2 2 1:title ’Cylindrical’:rotate 50 60
fplot ’2%t-1’ 0.5’ ’0’ ’2r’:axis:grid

axis ’2%y*x’ ’yxy - x*x’ 7’
subplot 2 2 2:title ’Parabolic’:rotate 50 60
fplot ’2%t-1’ ’0.5’ ’0’ ’2r’:axis:grid

axis ’y*sin(pi*x)’ ’y*cos(pi*x)’ ’x+z’



Chapter 5: MathGL examples

subplot 2 2 3:title ’Spiral’:rotate 50 60
fplot ’2%t-1’ ’0.5’ ’0’ ’2r’:axis:grid

5.2.4 Colorbars

64

MathGL handle [colorbar|, page 24 as special kind of axis. So, most of functions for axis
and ticks setup will work for colorbar too. Colorbars can be in log-scale, and generally as

arbitrary function scale; common factor of colorbar labels can be separated; and so on.

But of course, there are differences — colorbars usually located out of bounding box. At
this, colorbars can be at subplot boundaries (by default), or at bounding box (if symbol
‘T’ is specified). Colorbars can handle sharp colors. And they can be located at arbitrary
position too. The sample code, which demonstrate colorbar features is:

call ’prepare2d’
new v 9 ’x’

subplot 2 2 0:title ’Colorbar out of box’:box
colorbar ’<’:colorbar ’>’:colorbar ’_’:colorbar ’~’

subplot 2 2 1:title ’Colorbar near box’:box
colorbar ’<I’:colorbar ’>I’:colorbar ’_I’:colorbar "I’

subplot 2 2 2:title ’manual colors’:box:contd v a
colorbar v ’<’:colorbar v ’>’:colorbar v ’_’:colorbar v

subplot 2 2 3:title ’’:text -0.5 1.55 ’Color positions’

colorbar ’bwr>’ 0.25 O:text -0.9 1.2 ’Default’
colorbar ’b{w,0.3}r>’ 0.5 O:text -0.1 1.2 ’Manual’

)~

)

:C?

-2



Chapter 5: MathGL examples 65

crange 0.01 1e3
colorbar ’>’ 0.75 O:text 0.65 1.2 ’Normal scale’
colorbar ’>’:text 1.35 1.2 ’Log scale’

m.r out om Colorbar near box

-1 -0.5 0 0.5 1
II2 r . QII a3 a3
—e F B o— =) =)
I3 - : 2' 3 3
1 0.5 0 05 1 -1 05 0 05 1
[
10& ‘ Color positions log-scale
1 47505025 0 025 05 075 1 Default Memal ~ Normslscale  Log scale
— - - S B
‘ LI I
=1
.:,, = 3 " =
® ‘B "N
o o— o—
- —-—
E 3. . ;

5.2.5 Bounding box

Box around the plot is rather useful thing because it allows one to: see the plot boundaries,
and better estimate points position since box contain another set of ticks. MathGL provide
special function for drawing such box — [box], page 25 function. By default, it draw black
or white box with ticks (color depend on transparency type, see Section 5.9.3 [Types of
transparency|, page 127). However, you can change the color of box, or add drawing of
rectangles at rear faces of box. Also you can disable ticks drawing, but I don’t know why
anybody will want it. The sample code, which demonstrate [box|, page 25 features is:

subplot 2 2 0:title ’Box (default)’:rotate 50 60:box
subplot 2 2 1:title ’colored’:rotate 50 60:box ’r’
subplot 2 2 2:title ’with faces’:rotate 50 60:box ’@’

subplot 2 2 3:title ’both’:rotate 50 60:box ’Qcm’



Chapter 5: MathGL examples 66

Box (default) colored

5.2.6 Ternary axis

There are another unusual axis types which are supported by MathGL. These are ternary
and quaternary axis. Ternary axis is special axis of 3 coordinates a, b, ¢ which satisfy
relation a+b+c=1. Correspondingly, quaternary axis is special axis of 4 coordinates a, b, c,
d which satisfy relation a+b+c+d=1.

Generally speaking, only 2 of coordinates (3 for quaternary) are independent. So,
MathGL just introduce some special transformation formulas which treat a as ‘x’, b as
‘y’ (and c as ‘2’ for quaternary). As result, all plotting functions (curves, surfaces, contours
and so on) work as usual, but in new axis. You should use [ternary], page 16 function for
switching to ternary/quaternary coordinates. The sample code is:

ranges 01 0101

new x 50 ’0.25*(1+cos(2xpi*x))’

new y 50 ’0.25%(1+sin(2*pi*x))’

new z 50 ’x’

new a 20 30 ’30*x*xy*(1-x-y) "2*(x+y<1)’
new rx 10 ’rnd’:copy ry (1-rx)*rnd
light on

subplot 2 2 0:title ’Ordinary axis 3D’:rotate 50 60
box:axis:grid

plot x y z ’r2’:surf a ’#’

xlabel ’B’:ylabel ’C’:zlabel ’Z’

subplot 2 2 1:title ’Ternary axis (x+y+t=1)’:ternary 1
box:axis:grid ’xyz’ ’B;’

plot x y ’r2’:plot rx ry ’q”~ ’:cont a:line 0.5 0 0 0.75 ’g2’
xlabel ’B’:ylabel ’C’:tlabel ’A’



Chapter 5: MathGL examples 67

subplot 2 2 2:title ’Quaternary axis 3D’:rotate 50 60:ternary 2
box:axis:grid ’xyz’ ’B;’

plot x y z ’r2’:surf a ’#’

xlabel ’B’:ylabel ’C’:tlabel ’A’:zlabel ’D’

subplot 2 2 3:title ’Ternary axis 3D’:rotate 50 60:ternary 1
box:axis:grid ’xyz’ ’B;’

plot x y z ’r2’:surf a ’#’

xlabel ’B’:ylabel ’C’:tlabel ’A’:zlabel ’Z’

Ternary axis (x+y+t=1)

5.2.7 Text features

MathGL prints text by vector font. There are functions for manual specifying of text
position (like Puts) and for its automatic selection (like Label, Legend and so on). MathGL
prints text always in specified position even if it lies outside the bounding box. The default
size of font is specified by functions SetFontSize* (see Section 3.2.6 [Font settings|, page 14).
However, the actual size of output string depends on subplot size (depends on functions
SubPlot, InPlot). The switching of the font style (italic, bold, wire and so on) can be
done for the whole string (by function parameter) or inside the string. By default MathGL
parses TeX-like commands for symbols and indexes (see Section 2.5 [Font styles|, page 8).

Text can be printed as usual one (from left to right), along some direction (rotated text),
or along a curve. Text can be printed on several lines, divided by new line symbol ‘\n’.

Example of MathGL font drawing is:
call ’prepareld’

subplot 2 2 0 7’
text 0 1 ’Text can be in ASCII and in Unicode’
text 0 0.6 ’It can be \wire{wire}, \big{big} or #r{colored}’



Chapter 5: MathGL examples 68

text 0 0.2 ’One can change style in string: \b{bold}, \i{italic, \b{bothl}}’
text 0 -0.2 ’Easy to \af{overline} or \u{underline}’

text 0 -0.6 ’Easy to change indexes ~“{up} _{down} @{center}’

text 0 -1 ’It parse TeX: \int \alpha \cdot \

\sqrt3{sin(\pi x)"2 + \gamma_{i_k}} dx’

subplot 2 2 1 7’
text 0 0.5 ’\sqrt{\frac{\alpha~{\gamma~2}+\overset 1{\big\infty}}{\sqrt3{2+b}}}’ ’@’ -2J
text 0 -0.5 ’Text can be printed\n{}on several lines’

subplot 2 2 2 ’’:box:plot y(:,0)
text y ’This is very very long string drawn along a curve’ ’k’
text y ’Another string drawn above a curve’ ’Tr’

subplot 2 2 3 ’’:1line -1 -1 1 -1 ’rA’:text 0 -1 1 -1 ’Horizontal’
line -1 -1 1 1 ’rA’:text 0 0 1 1 ’At angle’ ’@’
line -1 -1 -1 1 ’rA’:text -1 0 -1 1 ’Vertical’

Text can be in ASCII and in Unicode

Tt can be wire, Dig or colored o
2+b

One can change style in string: bold, italic, both
Easy to overline or underline
Easy to change indexes " gyu, center Tﬂg&mﬂ

It parse TeX: fod/sin(mx)? + 7, dx

Iz
&

Vertical

L ] 1 Horizontal

You can change font faces by loading font files by function [loadfont], page 14. Note,
that this is long-run procedure. Font faces can be downloaded from MathGL website or
from here. The sample code is:

define d 0.25

loadfont ’STIX’:text O 1.1 ’default font (STIX)’
loadfont ’adventor’:text O 1.1-d ’adventor font’
loadfont ’bonum’:text 0 1.1-2*%d ’bonum font’
loadfont ’chorus’:text 0 1.1-3*%d ’chorus font’
loadfont ’cursor’:text 0 1.1-4*d ’cursor font’
loadfont ’heros’:text O 1.1-5%d ’heros font’


http://mathgl.sourceforge.net/download.html
http://sourceforge.net/project/showfiles.php?group_id=152187&package_id=267177

Chapter 5: MathGL examples 69

loadfont ’heroscn’:text O 1.1-6*d ’heroscn font’
loadfont ’pagella’:text O 1.1-7*d ’pagella font’
loadfont ’schola’:text 0 1.1-8*%d ’schola font’
loadfont ’termes’:text 0 1.1-9*%d ’termes font’

default font (STIX)
adventor font
bonum font
chorus font
cursor font
heros font
heroscn font
pagella font
schola font
termes font

5.2.8 Legend sample

Legend is one of standard ways to show plot annotations. Basically you need to connect
the plot style (line style, marker and color) with some text. In MathGL, you can do it
by 2 methods: manually using [addlegend], page 26 function; or use ‘legend’ option (see
Section 2.7 [Command options|, page 10), which will use last plot style. In both cases,
legend entries will be added into internal accumulator, which later used for legend drawing
itself. [clearlegend], page 26 function allow you to remove all saved legend entries.

There are 2 features. If plot style is empty then text will be printed without indent. If
you want to plot the text with indent but without plot sample then you need to use space
" as plot style. Such style ‘ ’ will draw a plot sample (line with marker(s)) which is invisible
line (i.e. nothing) and print the text with indent as usual one.

Command [legend], page 26 draw legend on the plot. The position of the legend can be
selected automatic or manually. You can change the size and style of text labels, as well as
setup the plot sample. The sample code demonstrating legend features is:
addlegend ’sin(\pi {x"2})’ ’b’
addlegend ’sin(\pi x)’ ’g*’
addlegend ’sin(\pi \sqrt{x})’ ’rd’
addlegend ’jsut text’ ’ ’
addlegend ’no indent for this’ 7’

subplot 2 2 0 ’’:title ’Legend (default)’:box
legend



Chapter 5: MathGL examples 70

text 0.75 0.65 ’Absolute position’ ‘A’
legend 3 ’A#’

subplot 2 2 2 ’’:title ’coloring’:box
legend O ’r#’:legend 1 ’Wb#’:legend 2 ’ygr#’

subplot 2 2 3 ’’:title ’manual position’:box
legend 0.5 1:text 0.5 0.55 ’at x=0.5, y=1’ ’a’
legend 1 ’#-’:text 0.75 0.25 ’Horizontal legend’ ’a’

Legend (default) —sin(zx?)
T T Sin(m}
] —-sin(xy/x)
| o sy | | just text
o indemt for this no indent for this

Absolute position

coloring manual position
7ﬂ“}) T T T 73{(;#)) T
| —O—sin(ﬁ)/i) | | +— gin(xy/x) |
no inﬁgﬂﬂa mmﬁﬂm
at x=0.5, y=1
B L Horizontal legend |
+— sin(xy/D) ) et
just text sin(xx), no indent for this
no indent for this —— i

5.2.9 Cutting sample

The last common thing which I want to show in this section is how one can cut off points
from plot. There are 4 mechanism for that.

e You can set one of coordinate to NAN wvalue. All points with NAN values will be
omitted.

e You can enable cutting at edges by SetCut function. As result all points out of bounding
box will be omitted.

e You can set cutting box by SetCutBox function. All points inside this box will be
omitted.

e You can define cutting formula by SetCut0ff function. All points for which the value
of formula is nonzero will be omitted. Note, that this is the slowest variant.
Below I place the code which demonstrate last 3 possibilities:

call ’prepare2d’
call ’prepare3d’



Chapter 5: MathGL examples 71

subplot 2 2 0:title ’Cut on (default)’:rotate 50 60
light on:box:surf a; zrange -1 0.5

subplot 2 2 1:title ’Cut off’:rotate 50 60
box:surf a; zrange -1 0.5; cut off

subplot 2 2 2:title ’Cut in box’:rotate 50 60:box:alpha on
cut 0 -1 -1 1 0 1.1:surf3 c
cut 0 0 0 0 0 O # restore back

subplot 2 2 3:title ’Cut by formula’:rotate 50 60:box
cut ’(z>(x+0.5%y-1)"2-1) & (z>(x-0.5%y-1)"2-1)’:surf3 c

Cut on (default) Cut off

»-

Cut by formula

5.3 Data handling

Class mglData contains all functions for the data handling in MathGL (see Chapter 4 [Data
processing|, page 44). There are several matters why I use class mglData but not a single
array: it does not depend on type of data (mreal or double), sizes of data arrays are kept
with data, memory working is simpler and safer.

5.3.1 Array creation

One can put numbers into the data instance by several ways. Let us do it for square
function:

e omne can create array by list command
list a 0 0.04 0.16 0.36 0.64 1

e another way is to copy from “inline” array
copy a [0,0.04,0.16,0.36,0.64,1]



Chapter 5: MathGL examples 72

e next way is to fill the data by textual formula with the help of modify function
new a 6
modify a ’x"2’°
e or one may fill the array in some interval and modify it later
new a 6
fill a 0 1
modify a ’u”2’
e or fill the array using current axis range
new a 6
£fill a > (x+1)°2/4°
or use single line
new a 6 ’(x+1)°2/4’
e finally it can be loaded from file
new s 6 ’(x+1)°2/4’
save s ’sqr.dat’ # create file first
read a ’sqr.dat’ # load it
e at this one can read only part of data
new s 6 ’(x+1)°2/4’
save s ’sqr.dat’ # create file first
read a ’sqr.dat’ 5 # load it

Creation of 2d- and 3d-arrays is mostly the same. One can use direct data filling by
list command

list a 11 12 13 | 21 22 23 | 31 32 33
or by inline arrays

copy a [[11,12,13],[21,22,23],[31,32,33]]
Also data can be filled by formula

new z 30 40 ’sin(pi*x)*cos(pixy)’

or loaded from a file.

5.3.2 Change data

MathGL has functions for data processing: differentiating, integrating, smoothing and so on
(for more detail, see Chapter 4 [Data processing], page 44). Let us consider some examples.
The simplest ones are integration and differentiation. The direction in which operation will
be performed is specified by textual string, which may contain symbols ‘x’, ‘y’ or ‘z’. For
example, the call of diff ’x’ will differentiate data along ‘x’ direction; the call of integrate
’xy’ perform the double integration of data along ‘x’ and ‘y’ directions; the call of diff2
*xyz’ will apply 3d Laplace operator to data and so on. Example of this operations on 2d

array a=x*y is presented in code:

ranges 0 1 0 1 0 1:new a 30 40 ’xx*xy’
subplot 2 2 O:title ’a(x,y)’:rotate 60 40
surf a:box



Chapter 5: MathGL examples 73

subplot 2 2 1:title ’da/dx’:rotate 60 40
diff a ’x’:surf a:box

subplot 2 2 2:title ’\int da/dx dxdy’:rotate 60 40
integrate a ’xy’:surf a:box

subplot 2 2 3:title ’\int {d"2}a/dxdy dx’:rotate 60 40
diff2 a ’y’:surf a:box

a(x,y)

Data smoothing (command [smooth], page 50) is more interesting and important. This
function has single argument which define type of smoothing and its direction. Now 3
methods are supported: ‘3’ — linear averaging by 3 points, ‘6’ — linear averaging by 5
points, and default one — quadratic averaging by 5 points.

MathGL also have some amazing functions which is not so important for data processing
as useful for data plotting. There are functions for finding envelope (useful for plotting
rapidly oscillating data), for data sewing (useful to removing jumps on the phase), for data
resizing (interpolation). Let me demonstrate it:

subplot 2 2 0 ’’:title ’Envelop sample’
new dl 1000 ’exp(-8%x~2)*sin(10*pi*x)’
axis:plot di ’b’

envelop d1 ’x’

plot di ’r’

subplot 2 2 1 ’’:title ’Smooth sample’:ranges 0 1 0 1

new yO 30 ’0.4*sin(pix*x) + 0.3%cos(1.5%pi*x) - 0.4*sin(2*pix*x)+0.5*rnd’
copy yl yO:smooth y1 ’x3’:plot yl ’r’;legend ’"3" style’

copy y2 yO:smooth y2 ’x5’:plot y2 ’g’;legend ’"5" style’

copy y3 yO:smooth y3 ’x’:plot y3 ’b’;legend ’default’



Chapter 5: MathGL examples 74

plot yO {m7}:s’;legend ’none’:legend:box

subplot 2 2 2:title ’Sew sample’:rotate 50 60:1ight on:alpha on
new d2 100 100 ’mod((y~2-(1-x)"2)/2,0.1)°

box:surf d2 ’b’

sew d2 ’xy’ 0.1

surf d2 ’r’

subplot 2 2 3:title ’Resize sample (interpolation)’
new x0 10 ’rnd’:new vO 10 ’rnd’

resize x1 x0 100:resize v1 vO 100

plot x0 vO ’b+ ’:plot x1 vl ’r-’:label x0 vO ’%n’

Envelop sample Smooth sample

T T T
none
7‘3'
5 style |

Finally one can create new data arrays on base of the existing one: extract slice, row or
column of data ([subdata], page 48), summarize along a direction(s) ([sum]|, page 49), find
distribution of data elements ([hist], page 49) and so on.

Another interesting feature of MathGL is interpolation and root-finding. There are
several functions for linear and cubic spline interpolation (see Section 4.8 [Interpolation],
page 51). Also there is a function [evaluate], page 48 which do interpolation of data array
for values of each data element of index data. It look as indirect access to the data elements.

This function have inverse function [solve], page 48 which find array of indexes at which
data array is equal to given value (i.e. work as root finding). But [solve], page 48 function
have the issue — usually multidimensional data (2d and 3d ones) have an infinite number
of indexes which give some value. This is contour lines for 2d data, or isosurface(s) for 3d
data. So, [solve], page 48 function will return index only in given direction, assuming that
other index(es) are the same as equidistant index(es) of original data. Let me demonstrate
this on the following sample.

zrange 0 1



Chapter 5: MathGL examples

new x 20 30 ’(x+2)/3*cos(pixy)’
new y 20 30 ’(x+2)/3*sin(pixy)’
new z 20 30 ’exp(-6*x"2-2*sin(pix*y) ~2)’

subplot 2 1 O:title ’Cartesian space’:rotate 30 -40

axis ’xyzU’ :box
xlabel ’x’:ylabel ’y’origin 1 1:grid ’xy’
mesh x y z

# section along ’x’ direction
solve u x 0.5 ’x’

var v u.nx 0 1

evaluate yy y u v

evaluate xx x u v

evaluate zz z u v

plot xx yy zz ’k20’

# 1st section along ’y’ direction
solve ul x -0.5 ’y’

var vl ul.nx 0 1

evaluate yy y vl ul

evaluate xx x vl ul

evaluate zz z vl ul

plot xx yy zz ’b27’

# 2nd section along ’y’ direction
solve u2 x -0.5 ’y’ ul

evaluate yy y vl u2

evaluate xx x vl u2

evaluate zz z vl u2

plot xx yy zz ’r2v’

subplot 2 1 1:title ’Accompanied space’
ranges 0 1 O 1l:origin 0 O
axis:box:xlabel ’i’:ylabel ’j’:grid2 z ’h’

plot u v ’k20’:1ine 0.4 0.5 0.8 0.5 kA’
plot vl ul ’b27’:1ine 0.5 0.15 0.5 0.3 ’bA’
plot vl u2 ’r2v’:1line 0.5 0.7 0.5 0.85 ’rA’

75



Chapter 5: MathGL examples 76

Cartesian space Accompanied space

— T T T T T
[ ,\,.\ I
L ] T
-
oal 1 i
Q - +—t
S e dil I
<L H 4
= el |
! al ]
(=]

1 1 Il L 1 L 1
0 02 04 06 08 1
i

5.4 Data plotting

Let me now show how to plot the data. Next section will give much more examples for all
plotting functions. Here I just show some basics. MathGL generally has 2 types of plotting
functions. Simple variant requires a single data array for plotting, other data (coordinates)
are considered uniformly distributed in axis range. Second variant requires data arrays for
all coordinates. It allows one to plot rather complex multivalent curves and surfaces (in
case of parametric dependencies). Usually each function have one textual argument for plot
style and accept options (see Section 2.7 [Command options]|, page 10).

Note, that the call of drawing function adds something to picture but does not clear the
previous plots (as it does in Matlab). Another difference from Matlab is that all setup (like
transparency, lightning, axis borders and so on) must be specified before plotting functions.

Let start for plots for 1D data. Term “1D data” means that data depend on single index
(parameter) like curve in parametric form {x(i),y(i),z(i)}, i=1..n. The textual argument
allow you specify styles of line and marks (see Section 2.3 [Line styles|, page 5). If this
parameter is empty ’’ then solid line with color from palette is used (see Section 3.2.7
[Palette and colors], page 15).

Below I shall show the features of 1D plotting on base of [plot], page 26 function. Let
us start from sinus plot:
new y0 50 ’sin(pi*x)’
subplot 2 2 0
plot yO:box

Style of line is not specified in [plot], page 26 function. So MathGL uses the solid line
with first color of palette (this is blue). Next subplot shows array y1 with 2 rows:
subplot 2 2 1
new yl 50 2
£ill y1 ’cos(pi* (x+y/4))*2/(y+3)’
plot yl:box



Chapter 5: MathGL examples 7

As previously I did not specify the style of lines. As a result, MathGL again uses solid
line with next colors in palette (there are green and red). Now let us plot a circle on the
same subplot. The circle is parametric curve x = cos(nt),y = sin(nt). I will set the color
of the circle (dark yellow, ‘Y’) and put marks ‘+” at point position:

new x 50 ’cos(pix*x)’
plot x yO Y+’

Note that solid line is used because I did not specify the type of line. The same picture
can be achieved by [plot], page 26 and [subdata], page 48 functions. Let us draw ellipse by
orange dash line:

plot y1(:,0) y1(:,1) ’ql”’

Drawing in 3D space is mostly the same. Let us draw spiral with default line style. Now
its color is 4-th color from palette (this is cyan):

subplot 2 2 2:rotate 60 40
new z 50 ’x’
plot x yO z:box

Functions [plot|, page 26 and [subdatal, page 48 make 3D curve plot but for single array.
Use it to put circle marks on the previous plot:

new y2 10 3 ’cos(pi*(x+y/2))’
modify y2 ’2*x-1’ 2
plot y2(:,0) y2(:,1) y2(:,2) ’bo ’
Note that line style is empty ¢ * here. Usage of other 1D plotting functions looks similar:

subplot 2 2 3:rotate 60 40
bars x y0O z ’r’:box

Surfaces [surf], page 31 and other 2D plots (see Section 3.11 [2D plotting], page 30) are
drown the same simpler as 1D one. The difference is that the string parameter specifies
not the line style but the color scheme of the plot (see Section 2.4 [Color scheme], page 6).
Here I draw attention on 4 most interesting color schemes. There is gray scheme where
color is changed from black to white (string ‘kw’) or from white to black (string ‘wk’).
Another scheme is useful for accentuation of negative (by blue color) and positive (by red
color) regions on plot (string ‘"BbwrR"’). Last one is the popular “jet” scheme (string
‘"BbcyrR"’).

Now I shall show the example of a surface drawing. At first let us switch lightning on
light on

and draw the surface, considering coordinates x,y to be uniformly distributed in interval
Min*Max
new a0 50 40 ’0.6*sin(pi*(x+1))*sin(1.5%pi*(y+1))+0.4*cos(0.75*pi*(x+1)*(y+1)) |}

subplot 2 2 O:rotate 60 40
surf al:box

Color scheme was not specified. So previous color scheme is used. In this case it is
default color scheme (“jet”) for the first plot. Next example is a sphere. The sphere is
parametrically specified surface:
new x 50 40 ’0.8+*sin(pi*x)*cos(pi*xy/2)’
new y 50 40 ’0.8*cos(pi*x)*cos(pixy/2)’



Chapter 5: MathGL examples 78

new z 50 40 ’0.8*sin(pix*y/2)’
subplot 2 2 l:rotate 60 40
surf x y z ’BbwrR’:box

I set color scheme to "BbwrR" that corresponds to red top and blue bottom of the sphere.

Surfaces will be plotted for each of slice of the data if nz>1. Next example draws surfaces
for data arrays with nz=3:

new al 50 40 3

modify al ’0.6*sin(2%pi*x)*sin(3*pi*y)+0.4*cos(3*pix(x*y))’
modify al ’0.6%cos(2*pixx)*cos(3*pikxy)+0.4*sin(3*pi*(x*y))’ 1
modify al ’0.6%cos(2*pi*x)*cos(3*xpi*y)+0.4*cos(3*xpix(xxy))’ 2
subplot 2 2 2:rotate 60 40

alpha on

surf al:box

Note, that it may entail a confusion. However, if one will use density plot then the
picture will look better:

subplot 2 2 3:rotate 60 40
dens al:box

Drawing of other 2D plots is analogous. The only peculiarity is the usage of flag ‘#’. By
default this flag switches on the drawing of a grid on plot ([grid], page 25 or [mesh], page 31
for plots in plain or in volume). However, for isosurfaces (including surfaces of rotation

[axial], page 33) this flag switches the face drawing off and figure becomes wired.

5.5 1D samples

This section is devoted to visualization of 1D data arrays. 1D means the data which depend
on single index (parameter) like curve in parametric form {x(i),y(i),z(i)}, i=1..n. Most of
samples will use the same data for plotting. So, I put its initialization in separate function

func ’prepareld’
new y 50 3
modify y ’0.7+*sin(2*pi*x)+0.5%cos(3*pi*x)+0.2*sin(pi*x)’
modify y ’sin(2*pix*x)’ 1
modify y ’cos(2*pi*x)’ 2
new x1 50 ’x’
new x2 50 ’0.05-0.03*cos(pi*x)’
new yl 50 ’0.5-0.3%*cos(pi*x)’
new y2 50 ’-0.3%sin(pi*x)’
return
Basically, you can put this text after the script. Note, that you need to terminate main
script by [stop], page 3 command before defining a function.

5.5.1 Plot sample

Command [plot], page 26 is most standard way to visualize 1D data array. By default, Plot
use colors from palette. However, you can specify manual color /palette, and even set to use
new color for each points by using ‘!’ style. Another feature is ¢’ style which draw only
markers without line between points. The sample code is:



Chapter 5: MathGL examples 79

call ’prepareld’
subplot 2 2 0 ’’:title ’Plot plot (default)’:box
plot y

subplot 2 2 2 ’’:title ’’!’ style; ’rgb’ palette’:box
plot y ’olrgb’

subplot 2 2 3 ’’:title ’just markers’:box
plot y ’ +°

new yc 30 ’sin(pi*x)’:new xc 30 ’cos(pi*x)’:new z 30 ’x’
subplot 2 2 1:title ’3d variant’:rotate 50 60:box
plot xc yc z ’rs’

Plot plot (default) 3d variant
-\\\ T T T ,/,, e
- .‘\_ TN B
\
L /]
NN
'I" style; 'rgb' palette just markers
%o, ’e»w = T T 7 ] =, T T T -
ey CN : i, -
v _fd S % f d I+ , *+++ | |
:»f % %, / e, R
G\Q e wﬁ 0adey, ¢ + T o
x. 9\2 :f . .p_.ﬁ +‘I IT¢+ :
L \e\& RQBP % gzag‘ [ ++ ++ " ++;++++
L hﬁ“"""nj{a%m@ﬁg L '+‘+L+‘+{ s

5.5.2 Radar sample

Command [radar]|, page 27 plot is variant of P1lot one, which make plot in polar coordinates
and draw radial rays in point directions. If you just need a plot in polar coordinates then
I recommend to use Section 5.2.3 [Curvilinear coordinates|, page 63 or Plot in parabolic
form with x=r*cos(£fi); y=r*sin(fi);. The sample code is:

new yr 10 3 ’0.4*sin(pi*(x+1.5+y/2)+0.1%rnd)’
subplot 1 1 O ’’:title ’Radar plot (with grid, "\#")~’
radar yr °’#’



Chapter 5: MathGL examples 80

Radar plot (with grid, '#')

5.5.3 Step sample

Command [step], page 27 plot data as stairs. It have the same options as Plot. The sample
code is:

call ’prepareld’
origin 0 O O:subplot 2 2 0 ’’:title ’Step plot (default)’:box

step y

new yc 30 ’sin(pi*x)’:new xc 30 ’cos(pi*x)’:new z 30 ’x’
subplot 2 2 1:title ’3d variant’:rotate 50 60:box
step xc yc z ’r’

subplot 2 2 2 ’’:title "!" style’:box
step y ’slrgb’



Chapter 5: MathGL examples 81

Step plot (default) 3d variant

5.5.4 Tens sample

Command [tens|, page 27 is variant of [plot], page 26 with smooth coloring along the curves.
At this, color is determined as for surfaces (see Section 2.4 [Color scheme|, page 6). The
sample code is:

call ’prepareld’
subplot 2 2 0 ’’:title ’Tens plot (default)’:box

tens y(:,0) y(:,1)

subplot 2 2 2 ’’:title ’ style’:box
tens y(:,0) y(:,1) %0’

new yc 30 ’sin(pi*x)’:new xc 30 ’cos(pi*x)’:new z 30 ’x’
subplot 2 2 1:title ’3d variant’:rotate 50 60:box
tens xc yc z z ’s’



Chapter 5: MathGL examples 82

Tens plot (default) 3d variant

5.5.5 Area sample

Command [area|, page 27 fill the area between curve and axis plane. It support gradient
filling if 2 colors per curve is specified. The sample code is:

call ’prepareld’

origin 0 0 O

subplot 2 2 0 ’’:title ’Area plot (default)’:box
area y

subplot 2 2 1 ’’:title ’2 colors’:box
area y ’cbgGyr’

subplot 2 2 2 ’’:title ’"!" style’:box
area y !’

new yc 30 ’sin(pi*x)’:new xc 30 ’cos(pi*x)’:new z 30 ’x’
subplot 2 2 3:title ’3d variant’:rotate 50 60:box
area xc yc z ’r’:area xc -yc z ’b#’



Chapter 5: MathGL examples 83

Area plot (default) 2 colors

a

5.5.6 Region sample
Command [region|, page 27 fill the area between 2 curves. It support gradient filling if 2

colors per curve is specified. Also it can fill only the region y1<y<y2 if style ‘i’ is used. The
sample code is:

call ’prepareld’

copy y1 y(:,1):copy y2 y(:,2)

subplot 2 2 0 ’’:title ’Region plot (default)’:box
region yl y2:plot yl1 ’k2’:plot y2 k2’

subplot 2 2 1 ’’:title ’2 colors’:box
region y1 y2 ’yr’:plot yl ’k2’:plot y2 ’k2’

subplot 2 2 2 ’’:title ’"!" style’:box
region yl1 y2 ’!’:plot yl1 ’k2’:plot y2 ’k2’

subplot 2 2 3 ’’:title ’"i" style’:box
region yl1 y2 ’ir’:plot yl1 ’k2’:plot y2 ’k2’



Chapter 5: MathGL examples 84

Region plot (default)

5.5.7 Stem sample

Command [stem], page 28 draw vertical bars. It is most attractive if markers are drawn
too. The sample code is:

call ’prepareld’
origin 0 O O:subplot 2 2 0 ’’:title ’Stem plot (default)’:box
stem y

new yc 30 ’sin(pi*x)’:new xc 30 ’cos(pi*x)’:new z 30 ’x’
subplot 2 2 1:title ’3d variant’:rotate 50 60:box
stem xc yc z ’rx’

subplot 2 2 2 ’’:title ’"!" style’:box
stem y ’olrgb’



Chapter 5: MathGL examples 85

Stem plot (default) 3d variant

"' style

5.5.8 Bars sample

[

Command [bars|, page 28 draw vertical bars. It have a lot of options: bar-above-bar (‘a
style), fall like (‘£’ style), 2 colors for positive and negative values, wired bars (‘# style),
3D variant. The sample code is:

new ys 10 3 ’0.8*sin(pi*(x+y/4+1.25))+0.2*rnd’:origin 0 0 O
subplot 3 2 0 ’’:title ’Bars plot (default)’:box
bars ys

subplot 3 2 1 ’’:title ’2 colors’:box
bars ys ’cbgGyr’

subplot 3 2 4 ’’:title ’"\#" style’:box
bars ys ’#’°

new yc 30 ’sin(pi*x)’:new xc 30 ’cos(pix*x)’:new z 30 ’x’
subplot 3 2 5:title ’3d variant’:rotate 50 60:box
bars xc yc z ’r’

subplot 3 2 2 ’’:title ’"a" style’:ranges -1 1 -3 3:box
bars ys ’a’

subplot 3 2 3 ’’:title ’"f" style’:box
bars ys ’f’



Chapter 5: MathGL examples 86

Bars plot (default) 2 colors 'a' stylc

]iILH"F IIII'II"I

1 1 1 1 1 1

'f style "# style 3d variant

e
I
—
——
—
|
—
.

oL
_II | II-I-‘

5.5.9 Barh sample

Command [barh], page 28 is the similar to Bars but draw horizontal bars. The sample code
is:

new ys 10 3 ’0.8*sin(pi*(x+y/4+1.25))+0.2*rnd’ :origin 0 0 O
subplot 2 2 0 ’’:title ’Barh plot (default)’:box
barh ys

subplot 2 2 1 ’’:title ’2 colors’:box
barh ys ’cbgGyr’

ranges -3 3 -1 1l:subplot 2 2 2 ’’:title ’"a" style’:box:barh ys ’a’
subplot 2 2 3 ’’: title ’"f" style’:box
barh ys ’f’



Chapter 5: MathGL examples

Barh plot (default) 2 colors
T — T P———
— —
- f N - —— -
e
| ————— i | |
-_— o S,
gy R —

F e, F e, |
___— I
E— | —

'a’ style 'f' style
] '
F | 9 F - L 9
H BEu = e
L s n ] L — |
[ | —
1 —_—

- Il B 1 - ——
HE = —
; 1 1 F\ 1

5.5.10 Cones sample

Command [cones|, page 28 is similar to Bars but draw cones. The sample code is:

new ys 10 3 ’0.8*sin(pi*(x+y/4+1.25))+0.2%rnd’
origin 0 0 0:1light on

subplot 2 2 0:title ’Cones plot’:rotate 50 60:box
cones ys

subplot 2 2 1:title ’2 colors’:rotate 50 60:box
cones ys ’cbgGyr’

subplot 2 2 2:title ’"\#" style’:rotate 50 60:box
cones ys ’#’

subplot 2 2 3:title ’"a" style’:rotate 50 60:zrange -2 2:box
cones ys ’a’

87



Chapter 5: MathGL examples 88

Cones plot 2 colors

5.5.11 Chart sample

Command [chart], page 28 draw colored boxes with width proportional to data values. Use
¢’ for empty box. Plot looks most attractive in polar coordinates — well known pie chart.
The sample code is:

new ch 7 2 ’rnd+0.1’:1ight on
subplot 2 2 0:title ’Chart plot (default)’:rotate 50 60:box
chart ch

subplot 2 2 1:title ’"\#" style’:rotate 50 60:box
chart ch ’#’

subplot 2 2 2:title ’Pie chart; " " color’:rotate 50 60:
axis ’(y+1)/2*cos(pi*x)’ ’(y+1)/2*sin(pi*x)’ ’’:box
chart ch ’bgr cmy#’

subplot 2 2 3:title ’Ring chart; " " color’:rotate 50 60:
axis ’(y+2)/3*cos(pi*x)’ ’(y+2)/3*sin(pi*x)’ ’’:box
chart ch ’bgr cmy#’



Chapter 5: MathGL examples

Chart plot (default) '# style

Vg

Pie chart; ' ' color Ring chart; ' ' color

v

5.5.12 BoxPlot sample

Command [boxplot], page 29 draw box-and-whisker diagram. The sample code is:

new a 10 7 ’(2%rnd-1)°3/2’
subplot 1 1 0 ’’:title ’Boxplot plot’:box
boxplot a

Boxplot plot

89



Chapter 5: MathGL examples 90

5.5.13 Candle sample

Command [candle], page 29 draw candlestick chart. This is a combination of a line-chart
and a bar-chart, in that each bar represents the range of price movement over a given time
interval. The sample code is:

new y 30 ’sin(pi*x/2)72’:copy yl y/2:copy y2 (y+1)/2
subplot 1 1 0 ’’:title ’Candle plot (default)’:yrange O 1:box

Candle plot (default)
l- ' 1 ' M

]

]

5.5.14 Error sample

Command [error|, page 29 draw error boxes around the points. You can draw default boxes
or semi-transparent symbol (like marker, see Section 2.3 [Line styles|, page 5). Also you
can set individual color for each box. The sample code is:

call ’prepareld’

new y 50 ’0.7*sin(pi*x-pi) + 0.5%cos(3*pi*(x+1)/2) + 0.2xsin(pix(x+1)/2)’
new x0 10 ’x + 0.1*%rnd-0.05’:new ex 10 ’0.1’:new ey 10 0.2’

new yO 10 ’0.7*sin(pi*x-pi) + 0.5*cos(3*pi*(x+1)/2) + 0.2*sin(pi*(x+1)/2) + 0.2*rnd-0.

subplot 2 2 0 ’’:title ’Error plot (default)’:box:plot y
error x0 yO ex ey ’k’

subplot 2 2 1 ’’:title ’"!" style; no e_x’:box:plot y
error x0 yO ey ’ol!rgb’

subplot 2 2 2 ’’:title ’"\@" style’:box:plot y
error x0 y0O ex ey ’Q’; alpha 0.5

subplot 2 2 3:title ’3d variant’:rotate 50 60:axis

1’0



Chapter 5: MathGL examples 91

for $1 0 9
errbox 2*rnd-1 2*xrnd-1 2*rnd-1 0.2 0.2 0.2 ’bo’

next

I-;rror plot (default) 'I' style; no ex

%S %
_ 'T\Hﬁ%- . ?\H\
o N\

'@' style
N ]
N S
I \_/ I

5.5.15 Mark sample

Command [mark]|, page 29 draw markers at points. It is mostly the same as Plot but
marker size can be variable. The sample code is:

call ’prepareld’
subplot 1 1 0 ’’:title ’Mark plot (default)’:box

mark y yl ’s’



Chapter 5: MathGL examples 92

| Mark plot (default) |

nnnnnnnnnnn

5.5.16 TextMark sample

Command [textmark], page 29 like Mark but draw text instead of markers. The sample
code is:

call ’prepareld’
subplot 1 1 0 ’’:title ’TextMark plot (default)’:box
textmark y y1l ’\gamma’ ’r’

TextMark plot (default)

Ty B ¥
¥ ¥ T T
¥ ¥
¥
'I'T 7{*1 T
' v T 1
T Y T
[ ¥ 7 1\‘ ¥ —
Al
¥ Y ¥ 1
v
¥ [ v ¥
T T ¥
- Y T
v
1 : T
T T T T
T
' ! T ¥
1
- ¥ T
' TE;TTT
¥
v
T
| Traly




Chapter 5: MathGL examples 93

5.5.17 Label sample

Command [label], page 30 print text at data points. The string may contain ‘%x’, ‘hy’, ‘%z’
for x-, y-, z-coordinates of points, ‘%n’ for point index. The sample code is:

new ys 10 ’0.2*rnd-0.8*sin(pi*x)’
subplot 1 1 0 ’’:title ’Label plot’:box
plot ys ’ *’:label ys ’y=ly’

Label plot

I

Y=Q-é5 y=0(.83

y=Q:>4 y=047 |

y={.19
y=0,032
B y=:0.1

*

| y=-0.52 =051 _
y=—Q.67

5.5.18 Table sample
Command [table], page 30 draw table with data values. The sample code is:

new ys 10 3 ’0.8*sin(pi*(x+y/4+1.25))+0.2*rnd’
subplot 2 2 0:title ’Table sample’:box
table ys ’y_1\n{}y_2\n{}y_3’

subplot 2 2 1:title ’no borders, colored’
table ys ’y_1\n{}y_2\n{}y_3’ ’r|’

subplot 2 2 2:title ’no font decrease’
table ys ’y_1\n{}y_2\n{}y_3’ ’#’

subplot 2 2 3:title ’manual width and position’:box
table 0.5 0.95 ys ’y_1\n{}y_2\n{}y_3’> ’#’;value 0.7



Chapter 5: MathGL examples

Table plot no borders, colored

v, | 0.0229]0.60 5

29 0379 |-0114 [-0.505 -0.673 -0.457 |0.185 |y, 0.0229 0,693 0.835 0705 0379 -0.114 -0.505 -0.673 0457 0.185
[ 045 | | 0,334 | [-0.567 [-0.748[-0300] 01 [0.727) 065 0992 0824 0336 -0.177 -0.567 -0.748 -0.3%9 0.1 0727
[+ T0800 072210183 .0 75 0 577 1-0'54 10708 0513 'O 1T [094815 0594 0722 0189 0254 0572 0364 0298 0213 0787 0.455
no font decrease manual width, position

e R B

5.5.19 Tube sample

Command [tube], page 30 draw tube with variable radius. The sample code is:

light on:call ’prepareld’
new yc 50 ’sin(pi*x)’:new xc 50 ’cos(pi*x)’:new z 50 ’x’:divto y1 20

subplot 2 2 0 ’’:title ’Tube plot (default)’:box
tube y 0.05

subplot 2 2 1 ’’:title ’variable radius’:box
tube y yi

subplot 2 2 2 ’’:title ’"\#" style’:box
tube y 0.05 ’#°

subplot 2 2 3:title ’3d variant’:rotate 50 60:box
tube xc yc z y2 ’r’

94



Chapter 5: MathGL examples 95

Tube plot (default)

5.5.20 Tape sample

Command [tape|, page 27 draw tapes which rotate around the curve as normal and binormal.
The sample code is:

call ’prepareld’
new yc 50 ’sin(pi*x)’:new xc 50 ’cos(pi*x)’:new z 50 ’x’

subplot 2 2 0 ’’:title ’Tape plot (default)’:box
tape y:plot y ’k’

subplot 2 2 1:title ’3d variant, 2 colors’:rotate 50 60:1ight on:box
plot xc yc z ’k’:tape xc yc z ’rg’

subplot 2 2 2:title ’3d variant, x only’:rotate 50 60:box
plot xc yc z ’k’:tape xc yc z ’xr’:tape xc yc z ’xr#’

subplot 2 2 3:title ’3d variant, z only’:rotate 50 60:box
plot xc yc z ’k’:tape xc yc z ’zg’:tape xc yc z ’zg#’



Chapter 5: MathGL examples 96

Tape plot (default) 3d variant, 2 colors

=

3d variant, x only 3d variant, z only

5.5.21 Torus sample

Command [torus], page 30 draw surface of the curve rotation. The sample code is:

call ’prepareld’
subplot 2 2 0:title ’Torus plot (default)’:light on:rotate 50 60:box
torus yl1 y2

subplot 2 2 1:title ’"x" style’:1light on:rotate 50 60:box
torus yl1 y2 ’x’

subplot 2 2 2:title ’"z" style’:1light on:rotate 50 60:box
torus yl1 y2 ’z’

subplot 2 2 3:title ’"\#" style’:light on:rotate 50 60:box
torus yl1 y2 ’#°



Chapter 5: MathGL examples 97

Torus plot (default)

5.6 2D samples

This section is devoted to visualization of 2D data arrays. 2D means the data which depend
on 2 indexes (parameters) like matrix z(i,j)=z(x(i),y(j)), i=1...n, j=1...m or in parametric
form {x(i,j),y(i,j),z(i,j)}. Most of samples will use the same data for plotting. So, I put its
initialization in separate function

func ’prepare2d’
new a 50 40 ’0.6*sin(pi*(x+1))*sin(1.5*pi*(y+1))+0.4%cos(0.75*pix(x+1)*(y+1)) |
new b 50 40 ’0.6%cos(pi*(x+1))*cos(1l.5*pi*(y+1))+0.4*cos(0.75*pix(x+1)*(y+1)) |}
return

Basically, you can put this text after the script. Note, that you need to terminate main
script by [stop], page 3 command before defining a function.

5.6.1 Surf sample

Command [surf], page 31 is most standard way to visualize 2D data array. Surf use color
scheme for coloring (see Section 2.4 [Color scheme|, page 6). You can use ‘# style for
drawing black meshes on the surface. The sample code is:

call ’prepare2d’

subplot 2 2 O:title ’Surf plot (default)’:rotate 50 60:1light on:box:surf a

subplot 2 2 1:title ’"\#" style; meshnum 10’:rotate 50 60:box
surf a ’#’; meshnum 10

subplot 2 2 2:title ’"." style’:rotate 50 60:box
surf a ’.’

new x 50 40 ’0.8*sin(pi*x)*sin(pi*(y+1)/2)’
new y 50 40 ’0.8*cos(pi*x)*sin(pix(y+1)/2)’



Chapter 5: MathGL examples 98

new z 50 40 ’0.8*cos(pi*(y+1)/2)’
subplot 2 2 3:title ’parametric form’:rotate 50 60:box
surf x y z ’BbwrR’

Surf plot (default) '# style; meshnum 10

5.6.2 SurfC sample

Command [surfc|, page 35 is similar to [surf], page 31 but its coloring is determined by
another data. The sample code is:

call ’prepare2d’
title ’SurfC plot’:rotate 50 60:1ight on:box
surfc a b



Chapter 5: MathGL examples 99

SurfC plot

5.6.3 SurfA sample

Command [surfa], page 36 is similar to [surf], page 31 but its transparency is determined
by another data. The sample code is:

call ’prepare2d’
title ’SurfC plot’:rotate 50 60:1light on:alpha on:box
surfa a b

SurfA plot




Chapter 5: MathGL examples 100

5.6.4 Mesh sample

Command [mesh], page 31 draw wired surface. You can use [meshnum|, page 14 for changing
number of lines to be drawn. The sample code is:

call ’prepare2d’
title ’Mesh plot’:rotate 50 60:box
mesh a

Mesh plot

5.6.5 Fall sample

Command [fall], page 31 draw waterfall surface. You can use [meshnum], page 14 for
changing number of lines to be drawn. Also you can use ‘x’ style for drawing lines in other
direction. The sample code is:

call ’prepare2d’
title ’Fall plot’:rotate 50 60:box
fall a



Chapter 5: MathGL examples 101

Fall plot

5.6.6 Belt sample

Command [belt], page 31 draw surface by belts. You can use ‘x’ style for drawing lines in
other direction. The sample code is:

call ’prepare2d’
title ’Belt plot’:rotate 50 60:box
belt a

Belt plot




Chapter 5: MathGL examples 102

5.6.7 Boxs sample

Command [boxs|, page 31 draw surface by boxes. You can use ‘#’ for drawing wire plot.
The sample code is:

call ’prepare2d’

origin 0 0 O

subplot 2 2 0:title ’Boxs plot (default)’:rotate 40 60:1light on:box
boxs a

subplot 2 2 1:title ’"\@" style’:rotate 50 60:box
boxs a '@’

subplot 2 2 2:title ’"\#" style’:rotate 50 60:box
boxs a ’#’

subplot 2 2 3:title ’compare with Tile’:rotate 50 60:box
tile a

Boxs plot (default) '@’ style

compare with Tile

5.6.8 Tile sample

Command [tile], page 31 draw surface by tiles. The sample code is:

call ’prepare2d’
subplot 1 1 0 ’’:title ’Tiles plot’:box
tile a



Chapter 5: MathGL examples 103

Tile plot

5.6.9 TileS sample

Command [tiles], page 36 is similar to [tile], page 31 but tile sizes is determined by another
data. This allows one to simulate transparency of the plot. The sample code is:

call ’prepare2d’
subplot 1 1 0 ’’:title ’Tiles plot’:box
tiles a b

TileS plot

5.6.10 Dens sample

Command [dens], page 32 draw density plot for surface. The sample code is:



Chapter 5: MathGL examples 104

call ’prepare2d’
subplot 2 2 0 ’’:title ’Dens plot (default)’:box
dens a

subplot 2 2 1:title ’3d variant’:rotate 50 60:box
dens a

subplot 2 2 2 ’’:title ’"\#" style; meshnum 10’:box
dens a ’#’; meshnum 10

new al 30 40 3 ’0.6*sin(2*pi*x+pi*(z+1)/2)*sin(3*pi*y+pi*z) +\
0.4*cos (3*pix*(x*xy)+pi*(z+1)°2/2)’
subplot 2 2 3:title ’several slices’:rotate 50 60:box

dens al
Dens plot (default) 3d variant
'# style; meshnum 10 several slices

T

5.6.11 Cont sample

Command [cont], page 32 draw contour lines for surface. You can select automatic (default)
or manual levels for contours, print contour labels, draw it on the surface (default) or at
plane (as Dens). The sample code is:

call ’prepare2d’

list v -0.5 -0.15 0 0.15 0.5

subplot 2 2 0:title ’Cont plot (default)’:rotate 50 60:box
cont a

subplot 2 2 1:title ’manual levels’:rotate 50 60:box
cont v a



Chapter 5: MathGL examples 105

subplot 2 2 2:title ’*"\_" style’:rotate 50 60:box
cont a ’_’

subplot 2 2 3 ’’:title ’"t" style’:box
cont a ’t’

Cont plot (default) manual levels

5.6.12 ContF sample

Command [contf], page 32 draw filled contours. You can select automatic (default) or
manual levels for contours. The sample code is:

call ’prepare2d’

list v -0.5 -0.15 0 0.15 0.5

subplot 2 2 0:title ’ContF plot (default)’:rotate 50 60:box
contf a

subplot 2 2 1:title ’manual levels’:rotate 50 60:box
contf v a

subplot 2 2 2:title ’*"\_" style’:rotate 50 60:box
contf a ’_’

new al 30 40 3 ’0.6*sin(2*pi*x+pi*(z+1)/2)*sin(3*pixy+pi*z) +\
0.4*cos (3xpix(xxy)+pi*(z+1)~2/2)°

subplot 2 2 3:title ’several slices’:rotate 50 60:box

contf al



Chapter 5: MathGL examples 106

ContF plot (default) manual levels

5.6.13 ContD sample

Command [contd], page 32 is similar to ContF but with manual contour colors. The sample
code is:

call ’prepare2d’

list v -0.5 -0.15 0 0.15 0.5

subplot 2 2 0:title ’ContD plot (default)’:rotate 50 60:box
contd a

subplot 2 2 1l:title ’manual levels’:rotate 50 60:box
contd v a

subplot 2 2 2:title ’*"\_" style’:rotate 50 60:box
contd a ’_’

new al 30 40 3 ’0.6*sin(2*pi*x+pi*(z+1)/2)*sin(3*pixy+pi*z) +\
0.4*cos (3xpix(xxy)+pi*(z+1)~2/2)°

subplot 2 2 3:title ’several slices’:rotate 50 60:box

contd al



Chapter 5: MathGL examples 107

ContD plot (default) manual levels

'_' style several slices

5.6.14 ContV sample

Command [contv], page 33 draw vertical cylinders (belts) at contour lines. The sample code
is:

call ’prepare2d’

list v -0.5 -0.15 0 0.15 0.5

subplot 2 2 0:title ’ContV plot (default)’:rotate 50 60:box
contv a

subplot 2 2 1:title ’manual levels’:rotate 50 60:box
contv v a

subplot 2 2 2:title ’"\_" style’:rotate 50 60:box
contv a ’_’

subplot 2 2 3:title ’ContV and ContF’:rotate 50 60:1ight on:box
contv a:contf a:cont a ’k’



Chapter 5: MathGL examples 108

ContV plot (default) manual levels

'_' style ContV and ContF

e

5.6.15 Axial sample

Command [axial], page 33 draw surfaces of rotation for contour lines. You can draw wire

() ()

surfaces (‘#” style) or ones rotated in other directions (‘x’, ‘z’ styles). The sample code is:

light on:alpha on:call ’prepare2d’
subplot 2 2 0O:title ’Axial plot (default)’:rotate 50 60:box
axial a

subplot 2 2 1:title ’"x" style;\".\" style’:1light on:rotate 50 60:box
axial a ’x.’

subplot 2 2 2:title ’"z" style’:1light on:rotate 50 60:box
axial a ’z’

subplot 2 2 3:title ’"\#" style’:light on:rotate 50 60:box
axial a ’#’



Chapter 5: MathGL examples 109

Axial plot (default) 'x' style; "'style

5.6.16 Grad sample

Command [grad], page 39 draw gradient lines for matrix. The sample code is:

call ’prepare2d’
subplot 1 1 0 ’’:title ’Grad plot’:box
grad a:dens a ’{u8}w{q8}’

Grad plot

g

-
e

5.7 3D samples

This section is devoted to visualization of 3D data arrays. 3D means the data which depend
on 3 indexes (parameters) like tensor a(i,j,k)=a(x(i),y(j).x(k)), i=1...n, j=1...m, k=1...1 or




Chapter 5: MathGL examples 110

in parametric form {x(i,j,k),y(i,j,k),z(i,j,k),a(i,j,k) }. Most of samples will use the same data
for plotting. So, I put its initialization in separate function

func ’prepare3dd’

new c 61 50 40 ’-2*(x"2+y~2+z"4-2"2)+0.2’

new d 61 50 40 ’1-2%tanh((x+y)*(x+y))’

return

Basically, you can put this text after the script. Note, that you need to terminate main
script by [stop], page 3 command before defining a function.

5.7.1 Surf3 sample

Command [surf3], page 33 is one of most suitable (for my opinion) functions to visualize 3D
data. It draw the isosurface(s) — surface(s) of constant amplitude (3D analogue of contour
lines). You can draw wired isosurfaces if specify ‘#’ style. The sample code is:

call ’prepare3d’

light on:alpha on

subplot 2 2 1:title ’Surf3 plot’:rotate 50 60:box

surf3 c

subplot 2 2 1:title ’"\#" style’:rotate 50 60:box
surf3 c ’#’

subplot 2 2 2:title ’"." style’:rotate 50 60:box
surf3 c 7.’

Surf3 plot (default) '# style

5.7.2 Surf3C sample

Command [surf3c|, page 36 is similar to [surf3], page 33 but its coloring is determined by
another data. The sample code is:



Chapter 5: MathGL examples 111

call ’prepare3d’
title ’Surf3 plot’:rotate 50 60:1ight on:alpha on:box
surf3c c d

Surf3C plot

5.7.3 Surf3A sample

Command [surf3al, page 36 is similar to [surf3], page 33 but its transparency is determined
by another data. The sample code is:

call ’prepare3d’
title ’Surf3 plot’:rotate 50 60:1ight on:alpha on:box
surf3a c d



Chapter 5: MathGL examples 112

Surf3A plot

5.7.4 Cloud sample
Command [cloud], page 34 draw cloud-like object which is less transparent for higher data

values. Similar plot can be created using many (about 10-20) Surf3A(a,a) isosurfaces. The
sample code is:

call ’prepare3d’
subplot 2 2 0:title ’Cloud plot’:rotate 50 60:alpha on:box
cloud c ’wyrRk’

subplot 2 2 1:title ’"!" style’:rotate 50 60:box
cloud c ’!'wyrRk’

subplot 2 2 2:title ’"." style’:rotate 50 60:box
cloud c ’.wyrRk’

subplot 2 2 3:title ’meshnum 10’:rotate 50 60:box
cloud c ’wyrRk’; meshnum 10



Chapter 5: MathGL examples 113

Cloud plot "' style

5.7.5 Dens3 sample

Command [dens3], page 34 draw just usual density plot but at slices of 3D data. The sample
code is:

call ’prepare3d’

title ’Dens3 sample’:rotate 50 60:alpha on:alphadef 0.7
origin O O O:box:axis ’_xyz’

dens3 ¢ ’x’:dens3 ¢ ’:y’:dens3 c 'z’

Dens3 sample




Chapter 5: MathGL examples 114

5.7.6 Cont3 sample

Command [cont3], page 34 draw just usual contour lines but at slices of 3D data. The
sample code is:

call ’prepare3d’
title ’Cont3 sample’:rotate 50 60:box
cont3 c ’x’:cont3 c:cont3 c ’z’

Cont3 sample

5.7.7 ContF3 sample

Command [contf3], page 35 draw just usual filled contours but at slices of 3D data. The
sample code is:

call ’prepare3d’

title ’Cont3 sample’:rotate 50 60:box:light on
contf3 ¢ ’x’:contf3 c:contf3 c 'z’

cont3 ¢ ’xk’:cont3 ¢ ’k’:cont3 c ’zk’



Chapter 5: MathGL examples 115

ContF3 sample

5.7.8 Dens projection sample

Functions [DensXYZ]|, page 39 draw density plot on plane perpendicular to corresponding
axis. One of possible application is drawing projections of 3D field. The sample code is:

call ’prepare3d’
title ’Dens[XYZ] sample’:rotate 50 60:box

densx {sum c ’x’} ’’ -1
densy {sum c ’y’} ’’ 1
densz {sum c ’z’} ’’ -1

Dens[XYZ] sample




Chapter 5: MathGL examples 116

5.7.9 Cont projection sample

Functions [ContXYZ], page 40 draw contour lines on plane perpendicular to corresponding
axis. One of possible application is drawing projections of 3D field. The sample code is:

call ’prepare3d’
title ’Cont[XYZ] sample’:rotate 50 60:box

contx {sum c ’x’} ’’ -1
conty {sum c ’y’} ’’ 1
contz {sum c ’z’} ’’ -1

Cont[XYZ] sample

5.7.10 ContF projection sample

Functions ContFXYZ draw filled contours on plane perpendicular to corresponding axis. One
of possible application is drawing projections of 3D field. The sample code is:

call ’prepare3d’

title ’ContF[XYZ] sample’:rotate 50 60:box
contfx {sum c ’x’} ’’ -1

contfy {sum ¢ ’y’} ’’ 1

contfz {sum c ’z’} ’’ -1



Chapter 5: MathGL examples 117

ContF[XYZ] sample

5.7.11 TriPlot and QuadPlot
Command [triplot], page 40 and [quadplot], page 41 draw set of triangles (or quadrangles

for QuadP
but also t

lot) for irregular data arrays. Note, that you have to provide not only vertexes,
he indexes of triangles or quadrangles. I.e. perform triangulation by some other

library. The sample code is:

list q O
list xq
list yq
list zq
light on
subplot
quadplot
quadplot

subplot
quadplot
quadplot

list £t O
list xt
list yt
list zt
subplot
triplot
triplot

subplot
triplot

1231 4567102461 1357104151 2637
-11-11-11-11
-1-111-1-111
-1-1-1-11111

2 2 0:title ’QuadPlot sample’:rotate 50 60
q xq yq zq ’yr’
q xq yq zq ’#k’

2 2 2:title ’QuadPlot coloring’:rotate 50 60
q xq yq zq yq ’yr’
q xq yq zq ’#k’

12]10131]0231]123
-1100
-1-110
-1-1-11
2 2 1:title ’TriPlot sample’:rotate 50 60
t xt yt zt ’b’
t xt yt zt ’#k’

2 2 3:title ’TriPlot coloring’:rotate 50 60
t xt yt zt yt ’cb’



Chapter 5: MathGL examples 118

triplot t xt yt zt ’#k’
tricont t xt yt zt ’B’

QuadPlot sample TriPlot sample
QuadPlot coloring TriPlot coloring

- o

5.7.12 Dots sample

Command [dots]|, page 41 is another way to draw irregular points. Dots use color scheme
for coloring (see Section 2.4 [Color scheme|, page 6). The sample code is:

new t 1000 ’pi*(rnd-0.5)’:new f 1000 ’2*pi*rnd’
copy x 0.9%cos(t)*cos(f)

copy y 0.9*cos(t)*sin(f)

copy z 0.6*sin(t)

title ’Dots sample’:rotate 50 60:box

dots x y z



Chapter 5: MathGL examples 119

Dots sample

5.8 Vector field samples

Vector field visualization (especially in 3d case) is more or less complex task. MathGL
provides 3 general types of plots: vector field itself (Vect), flow threads (Flow), and flow
pipes with radius proportional to field amplitude (Pipe).

However, the plot may look tangly — there are too many overlapping lines. I may suggest
2 ways to solve this problem. The first one is to change SetMeshNum for decreasing the
number of hachures. The second way is to use the flow thread chart Flow, or possible many
flow thread from manual position (FlowP). Unfortunately, I don’t know any other methods
to visualize 3d vector field. If you know any, e-mail me and I shall add it to MathGL.

Most of samples will use the same data for plotting. So, I put its initialization in separate
function

func ’prepare2v’

new a 20 30 ’0.6*sin(pi*(x+1))*sin(1.5*pi*(y+1))+0.4%cos(0.75*pix(x+1)*(y+1)) |
new b 20 30 ’0.6%cos(pi*(x+1))*cos(1l.5*pi*(y+1))+0.4*cos(0.75*pix(x+1)*(y+1)) ]}
return

func ’prepare3dv’

define $1 pow(x*x+y*y+(z-0.3)*(z-0.3)+0.03,1.5)
define $2 pow(x*x+y*y+(z+0.3)*(z+0.3)+0.03,1.5)
new ex 10 10 10 ’0.2*x/$1-0.2*x/$2’

new ey 10 10 10 ’0.2%y/$1-0.2%y/$2’

new ez 10 10 10 ’0.2%(z-0.3)/$1-0.2%(z+0.3)/$2’
return

Basically, you can put this text after the script. Note, that you need to terminate main
script by [stop], page 3 command before defining a function.



Chapter 5: MathGL examples 120

5.8.1 Vect sample

Command [vect], page 37 is most standard way to visualize vector fields — it draw a lot of
arrows or hachures for each data cell. It have a lot of options which can be seen on the
figure (and in the sample code). Vect use color scheme for coloring (see Section 2.4 [Color
scheme]|, page 6). The sample code is:

call ’prepare2v’
subplot 3 2 0 ’’:title ’Vect plot (default)’:box
vect a b

subplot 3 2 1 ’’:title ’"." style; "=" style’:box
vect a b ’.=’

subplot 3 2 2 ’’:title ’"f" style’:box
vect a b ’f’

subplot 3 2 3 ’’:title "">" style’:box
vect a b ’>’

subplot 3 2 4 ’’:title ’"<" style’:box
vect a b ’<’

call ’prepare3v’
subplot 3 2 5:title ’3d variant’:rotate 50 60:box
vect ex ey ez

3d variant




Chapter 5: MathGL examples 121

5.8.2 Vect3 sample

Command [vect3], page 38 draw just usual vector field plot but at slices of 3D data. The
sample code is:

origin 0 O O:call ’prepare3dv’

subplot 2 1 0:title ’Vect3 sample’:rotate 50 60
box:axis ’_xyz’

vect3d ex ey ez ’x’:vect3 ex ey ez:vect3 ex ey ez 'z’

subplot 2 1 1:title ’"f" style’:rotate 50 60

box:axis ’_xyz’

vect3 ex ey ez ’fx’:vect3 ex ey ez ’f’:vect3d ex ey ez 'fz’
grid3d ex ’Wx’:grid3 ex ’W’:grid3 ex ’Wz’

Vect3 sample ' style

5.8.3 Traj sample

Command [traj], page 37 is 1D analogue of Vect. It draw vectors from specified points.
The sample code is:

call ’prepareld’
subplot 1 1 0 ’’:title ’Traj plot’:box
plot x1 y:traj x1 y y1 y2



Chapter 5: MathGL examples 122

5.8.4 Flow sample

Command [flow], page 38 is another standard way to visualize vector fields — it draw lines
(threads) which is tangent to local vector field direction. MathGL draw threads from edges
of bounding box and from central slices. Sometimes it is not most appropriate variant —
you may want to use FlowP to specify manual position of threads. Flow use color scheme
for coloring (see Section 2.4 [Color scheme], page 6). At this warm color corresponds to
normal flow (like attractor), cold one corresponds to inverse flow (like source). The sample
code is:

call ’prepare2v’
subplot 2 2 0 ’’:title ’Flow plot (default)’:box
flow a b

subplot 2 2 1 ’’:title ’"v" style’:box
flow a b ’v’

subplot 2 2 2 ’’:title ’from edges only’:box
flow a b ’#’

call ’prepare3v’
subplot 2 2 3:title ’3d variant’:rotate 50 60:box
flow ex ey ez



Chapter 5: MathGL examples 123

Flow plot (default)
‘ C ‘

5.8.5 Pipe sample

Command [pipe], page 39 is similar to [flow], page 38 but draw pipes (tubes) which radius
is proportional to the amplitude of vector field. Pipe use color scheme for coloring (see
Section 2.4 [Color scheme], page 6). At this warm color corresponds to normal flow (like
attractor), cold one corresponds to inverse flow (like source). The sample code is:

call ’prepare2v’
subplot 2 2 0 ’’:title ’Pipe plot (default)’:1light on:box
pipe a b

subplot 2 2 1 ’’:title ’"i" style’:box
pipe a b ’i’

subplot 2 2 2 ’’:title ’from edges only’:box
pipe a b ’#’

call ’prepare3v’
subplot 2 2 3:title ’3d variant’:rotate 50 60:box
pipe ex ey ez ’’ 0.1



124

Chapter 5: MathGL examples

" style

v

Pipe plot (default)

3d variant

'# style

5.8.6 Dew sample

Command [dew], page 38 is similar to Vect but use drops instead of arrows. The sample

code is:

call ’prepare2v’

subplot 1 1 0 ’’:title ’Dew plot’:1light on:box

dew a b

Dew plot

2 2 o

1]

(0799?999 oy
R |

ke ddﬂjdto:?ﬂ/?ﬂ

Y i I R N T Ty
hondgecot®R QP oooggyyyl d2essY
bob oo wbbdﬂddddaaqﬂﬂﬂﬂ
secorecoodlBl020qgyy ooy
RecoggopoesdsPooonny |y jsd008Y
Secggfhhyvoscolloentyigeecl

Soog )y yeeoo008000000gdd 00l

Segdhhyyneyeeietoccoreooo 0l

N e L T - R

¢ b o eaveendbldoeesear Py

nnoodaddddddﬂdoon_aﬂnu?ﬂpypadoo

ooooo.uﬂ,o/.udd.ad?om_qqnvpﬂﬂppaam:u
voonuuuuuaaagoabquOppppppa40
VauwgmﬁoooooagaQqqonuppﬁppn;a_aln
uonaZaaaaoqquﬁ_guoooai.:ppppp
ubqof_apoppoﬂ:“nqqoaooaoappﬂﬁﬂﬂ
b 000088 sscccepag 0000l 8 g
AR RRA S AN Y N N E A AR R AL LN

poononsheosansclnopopohocccnas




Chapter 5: MathGL examples 125

5.9 Hints

In this section I've included some small hints and advices for the improving of the quality of
plots and for the demonstration of some non-trivial features of MathGL library. In contrast
to previous examples I showed mostly the idea but not the whole drawing function.

5.9.1 “Compound” graphics

As T noted above, MathGL functions (except the special one, like Clf()) do not erase the
previous plotting but just add the new one. It allows one to draw “compound” plots easily.
For example, popular Matlab command surfc can be emulated in MathGL by 2 calls:

Surf(a);

Cont(a, "_"); // draw contours at bottom

Here a is 2-dimensional data for the plotting, -1 is the value of z-coordinate at which
the contour should be plotted (at the bottom in this example). Analogously, one can draw
density plot instead of contour lines and so on.

Another nice plot is contour lines plotted directly on the surface:

Light (true); // switch on light for the surface
Surf(a, "BbcyrR"); // select ’jet’ colormap for the surface
Cont(a, "y"); // and yellow color for contours

The possible difficulties arise in black&white case, when the color of the surface can be
close to the color of a contour line. In that case I may suggest the following code:

Light(true); // switch on light for the surface
Surf(a, "kw"); // select ’gray’ colormap for the surface

CAxis(-1,0); // first draw for darker surface colors
Cont(a, "w"); // white contours
CAxis(0,1); // now draw for brighter surface colors
Cont(a, "k"); // black contours
CAxis(-1,1); // return color range to original state

The idea is to divide the color range on 2 parts (dark and bright) and to select the
contrasting color for contour lines for each of part.

Similarly, one can plot flow thread over density plot of vector field amplitude (this is
another amusing plot from Matlab) and so on. The list of compound graphics can be
prolonged but I hope that the general idea is clear.

Just for illustration I put here following sample code:

call ’prepare2v’

call ’prepare3d’

new v 10:fill v -0.5 1l:copy d sqrt(a"2+b~2)

subplot 2 2 O:title ’Surf + Cont’:rotate 50 60:1light on:box
surf a:cont a ’y’

subplot 2 2 1 ’’:title ’Flow + Dens’:light off:box
flow a b ’br’:dens d

subplot 2 2 2:title ’Mesh + Cont’:rotate 50 60:box
mesh a:cont a ’_’



Chapter 5: MathGL examples 126

subplot 2 2 3:title ’Surf3 + ContF3’:rotate 50 60:1ight on
box:contf3 v ¢ ’z’ O:contf3d v ¢ ’x’:contf3 v c

cut 0 -1 -1101.1

contf3 v ¢ ’z’ c.nz-1:surf3 c -0.5

Surf + Cont Flow + Dens

Surf3 + ContF3

5.9.2 Transparency and lighting

Here I want to show how transparency and lighting both and separately change the look of
a surface. So, there is code and picture for that:

call ’prepare2d’
subplot 2 2 0:title ’default’:rotate 50 60:box
surf a

subplot 2 2 1:title ’light on’:rotate 50 60:box
light on:surf a

subplot 2 2 3:title ’light on; alpha on’:rotate 50 60:box
alpha on:surf a

subplot 2 2 2:title ’alpha on’:rotate 50 60:box
light off:surf a



Chapter 5: MathGL examples 127

default light on

5.9.3 Types of transparency

MathGL library has advanced features for setting and handling the surface transparency.
The simplest way to add transparency is the using of command [alpha], page 12. As a
result, all further surfaces (and isosurfaces, density plots and so on) become transparent.
However, their look can be additionally improved.

The value of transparency can be different from surface to surface. To do it just use
SetAlphaDef before the drawing of the surface, or use option alpha (see Section 2.7 [Com-
mand options], page 10). If its value is close to 0 then the surface becomes more and
more transparent. Contrary, if its value is close to 1 then the surface becomes practically
non-transparent.

Also you can change the way how the light goes through overlapped surfaces. The
function SetTranspType defines it. By default the usual transparency is used (‘0’) — surfaces
below is less visible than the upper ones. A “glass-like” transparency (‘1’) has a different
look — each surface just decreases the background light (the surfaces are commutable in this
case).

A “neon-like” transparency (‘2’) has more interesting look. In this case a surface is the
light source (like a lamp on the dark background) and just adds some intensity to the color.
At this, the library sets automatically the black color for the background and changes the
default line color to white.

As example I shall show several plots for different types of transparency. The code is
the same except the values of SetTranspType function:

call ’prepare2d’

alpha on:light on

transptype 0:clf

subplot 2 2 O:rotate 50 60:surf a:box
subplot 2 2 l:rotate 50 60:dens a:box
subplot 2 2 2:rotate 50 60:cont a:box



Chapter 5: MathGL examples 128

subplot 2 2 3:rotate 50 60:axial a:box




Chapter 5: MathGL examples 129

5.9.4 Axis projection

You can easily make 3D plot and draw its x-,y-,z-projections (like in CAD) by using
[ternary|, page 16 function with arguments: 4 for Cartesian, 5 for Ternary and 6 for Qua-
ternary coordinates. The sample code is:

ranges 0 1 01 01

new x 50 ’0.25%(l+cos(2*pi*x))’

new y 50 ’0.25*%(1+sin(2*pi*x))’

new z 50 ’x’

new a 20 30 ’30*x*xy*(1-x-y) "2*(x+y<1)’

new rx 10 ’rnd’:new ry 10:fill ry ’(1-v)*rnd’ rx
light on

title ’Projection sample’:ternary 4:rotate 50 60
box:axis:grid

plot x y z ’r2’:surf a ’#’

xlabel ’X’:ylabel ’Y’:zlabel ’Z’



Chapter 5: MathGL examples 130

Projection sample

0 02 04 056 08 1
L e e

5.9.5 Adding fog

MathGL can add a fog to the image. Its switching on is rather simple — just use [fog],
page 13 function. There is the only feature — fog is applied for whole image. Not to
particular subplot. The sample code is:

call ’prepare2d’

title ’Fog sample’:rotate 50 60:1light on
fog 1

box:surf a

Fog sample




Chapter 5: MathGL examples 131

5.9.6 Several light sources

In contrast to the most of other programs, MathGL supports several (up to 10) light sources.
Moreover, the color each of them can be different: white (this is usual), yellow, red, cyan,
green and so on. The use of several light sources may be interesting for the highlighting of
some peculiarities of the plot or just to make an amusing picture. Note, each light source
can be switched on/off individually. The sample code is:

call ’prepare2d’

title ’Several light sources’:rotate 50 60:1ight on

light 1 0 1 0 ’c’:1ight 2 1 0 0 ’y’:1ight 3 0 -1 0 ’m’

box:surf a ’h’

Several light sources

5.9.7 Using primitives

MathGL provide a set of functions for drawing primitives (see Section 3.6 [Primitives],
page 21). Primitives are low level object, which used by most of plotting functions. Picture
below demonstrate some of commonly used primitives.

subplot 2 2 0 ’’:title ’Line, Curve, Rhomb, Ellipse’ ’’ -1.5
line -1 -1 -0.5 1 ’qAI’

curve -0.6 -1 110111 °rA’°

ball 0 -0.5 ’*’:ball 1 -0.1 ’%’

rhomb 0 0.4 1 0.9 0.2 ’b#’

rhomb 0 0 1 0.4 0.2 ’cg@’

ellipse 0 -0.5 1 -0.1 0.2 ’u#’

ellipse 0 -1 1 -0.6 0.2 ’'m@’

light on
subplot 2 2 1:title ’Facelxyz]’:rotate 50 60:box
facex 1 0 -1 11 ’r’:facey -1 -1 -1 11 ’g’:facez 1 -1 -1-11"7b’



Chapter 5: MathGL examples 132

face -1 -11-1111-10111 ’bmgr’

subplot 2 2 3 ’’:title ’Cone’

cone -0.7 -0.3 0 -0.7 0.7 0.5 0.2 0.1 ’b’:text -0.7 -0.7 ’no edges\n(default)’]]
cone 0 -0.3 0 0 0.7 0.5 0.2 0.1 ’g@’:text 0 -0.7 ’with edges\n(’\@’ style)’

cone 0.7 -0.3 0 0.7 0.7 0.5 0.2 0.1 ’ry’:text 0.7 -0.7 ’"arrow" with\n{}gradient’]]
subplot 2 2 2 ’’:title ’Sphere and Drop’

line -0.9 01 0.90 1

text -0.9 -0.7 ’sh=0’:drop -0.9 0 0 1 0.5 ’r’ 0:ball -0.9 0 1 'k’

text -0.3 -0.7 ’sh=0.33’:drop -0.3 0 0 1 0.5 ’r’ 0.33:ball -0.3 0 1 ’k’

text 0.3 -0.7 ’sh=0.67’:drop 0.3 0 0 1 0.5 ’r’ 0.67:ball 0.3 0 1 ’k’

text 0.9 -0.7 ’sh=1’:drop 0.9 0 0 1 0.5 ’r’ 1:ball 0.9 0 1 ’k’

Line, Curve, Rhomb, Ellipse Face[xyz]

///

= \om

Sphere and Drop _ Cone

3009 01,

‘arrow’ with
0 O O» = =

asp=0.33 asp=0.67 asp=1.5

Generally, you can create arbitrary new kind of plot using primitives. For example,
MathGL don’t provide any special functions for drawing molecules. However, you can do
it using only one type of primitives [drop|, page 22. The sample code is:

alpha on:light on
subplot 2 2 0 ’’:title ’Methane, CH_4’:rotate 60 120

sphere 0 0 0 0.25 ’k’:drop 0 0 0 0 0 1 0.35 ’h’ 1 2:sphere 0 0 0.7 0.25 ’g’
drop 0 0 0 -0.94 0 -0.33 0.35 ’h’ 1 2:sphere -0.66 0 -0.23 0.25 ’g’

drop 0 0 0 0.47 0.82 -0.33 0.35 ’h’ 1 2:sphere 0.33 0.57 -0.23 0.25 ’g’
drop 0 0 0 0.47 -0.82 -0.33 0.35 ’h’ 1 2:sphere 0.33 -0.57 -0.23 0.25 ’g’

subplot 2 2 1 ’’:title ’Water, H{_2}0’:rotate 60 100
sphere .25 ’r’:drop 0 0 0 0.3 0.5 0 0.3 ’m’ 1 2:sphere 0.3 0.5 0 0.25 g’}

0000
drop 0 0 0 0.3 -0.5 0 0.3 ’m’ 1 2:sphere 0.3 -0.5 0 0.25 ’g’



Chapter 5: MathGL examples 133

subplot 2 2 2 ’’:title ’Oxygen, 0_2’:rotate 60 120
drop 0 0.5 0 0 -0.3 0 0.3 ’m’ 1 2:sphere 0 0.5 0 0.25 ’r’
drop 0 -0.5 0 0 0.3 0 0.3 ’m’ 1 2:sphere 0 -0.5 0 0.25 ’r’

subplot 2 2 3 ’’:title ’Ammonia, NH_3’:rotate 60 120

sphere 0 0 0 0.25 ’b’:drop 0 0 0 0.33 0.57 0 0.32 ’n’ 1 2

sphere 0.33 0.57 0 0.25 ’g’:drop 0 0 0 0.33 -0.57 0 0.32 ’n’ 1 2
sphere 0.33 -0.57 0 0.25 ’g’:drop 0 0 0 -0.65 0 0 0.32 ’n’ 1 2
sphere -0.65 0 0 0.25 ’g’

Methane, CH,4 Water, H,O
Oxygen, O, Ammonia, NH;

g @Q

Moreover, some of special plots can be more easily produced by primitives rather than
by specialized function. For example, Venn diagram can be produced by Error plot:

list x -0.3 0 0.3:1ist y 0.3 -0.3 0.3:1list e 0.7 0.7 0.7
title ’Venn-like diagram’:alpha on
error x y e e ’!rgb@#o’

You see that you have to specify and fill 3 data arrays. The same picture can be produced
by just 3 calls of [circle], page 22 function:

title ’Venn-like diagram’:alpha on
circle -0.3 0.3 0.7 ’rr@’

circle 0 -0.3 0.7 ’gg@’

circle 0.3 0.3 0.7 ’bbe@’

Of course, the first variant is more suitable if you need to plot a lot of circles. But for
few ones the usage of primitives looks easy.



Chapter 5: MathGL examples 134

Venn-like diagram

5.9.8 STFA sample

Short-time Fourier Analysis ([stfa], page 37) is one of informative method for analyzing
long rapidly oscillating 1D data arrays. It is used to determine the sinusoidal frequency and
phase content of local sections of a signal as it changes over time.

MathGL can find and draw STFA result. Just to show this feature I give following
sample. Initial data arrays is 1D arrays with step-like frequency. Exactly this you can see
at bottom on the STFA plot. The sample code is:

new a 2000:new b 2000
fill a ’cos(50*pi*x)*(x<-.5)+cos(100*pi*x)*(x<0)*(x>-.5)+\
cos (200*pi*x) * (x<.5) * (x>0) +cos (400*pi*x)*(x>.5)"’

subplot 1 2 0 ’<_’:title ’Initial signal’
plot a:axis:xlabel ’\i t’

subplot 1 2 1 ’<_’:title ’STFA plot’
stfa a b 64:axis:ylabel ’\omega’ O:xlabel ’\i t’



Chapter 5: MathGL examples 135

Initial signal

;l"'“\f\”H'"\l\r”wlﬂﬂ“’ ‘
i ””"\HH
i H
<
L STFA plot t

5.9.9 Mapping visualization

Sometime ago I worked with mapping and have a question about its visualization. Let me
remember you that mapping is some transformation rule for one set of number to another
one. The 1d mapping is just an ordinary function — it takes a number and transforms it to
another one. The 2d mapping (which I used) is a pair of functions which take 2 numbers
and transform them to another 2 ones. Except general plots (like [surfc], page 35, [surfa],
page 36) there is a special plot — Arnold diagram. It shows the area which is the result of
mapping of some initial area (usually square).

I tried to make such plot in [map]|, page 36. It shows the set of points or set of faces, which
final position is the result of mapping. At this, the color gives information about their initial
position and the height describes Jacobian value of the transformation. Unfortunately, it
looks good only for the simplest mapping but for the real multivalent quasi-chaotic mapping
it produces a confusion. So, use it if you like :).

The sample code for mapping visualization is:

new a 50 40 ’x’:new b 50 40 ’y’:zrange -2 2:text 0 O ’\to’
subplot 2 1 O:text 0 1.1 ’\{x, y\}’ ’’ -2:box
map a b ’brgk’

subplot 2 1 1:box
text 0 1.1 ’\{\frac{x"3+y~3}{2}, \frac{x-yH2}\}’ > -2
fill a > (x"3+y~3)/2’:fill b ’(x-y)/2’:map a b ’brgk’



Chapter 5: MathGL examples 136

{x, y} {22, 2

5.9.10 Making histogram

Using the [hist], page 49 function(s) for making regular distributions is one of useful fast
methods to process and plot irregular data. Hist can be used to find some momentum of
set of points by specifying weight function. It is possible to create not only 1D distributions
but also 2D and 3D ones. Below I place the simplest sample code which demonstrate |hist],
page 49 usage:

new x 10000 ’2xrnd-1’:new y 10000 ’2*rnd-1’:copy z exp(-6*(x"2+y~2))
hist xx x z:norm xx O 1l:hist yy y z:norm yy O 1

multiplot 3 3 3 2 2 ’’:ranges -1 1 -1 1 0 1:box:dots x y z ’wyrRk’
multiplot 3 3 0 2 1 ’’:ranges -1 1 0 1:box:bars xx

multiplot 3 3 51 2 ’’:ranges 0 1 -1 1:box:barh yy

subplot 3 3 2:text 0.5 0.5 ’Hist and\n{}MultiPlot\n{}sample’ ’a’ -3



Chapter 5: MathGL examples 137

Hist and
MultiPlot
sample

5.9.11 Nonlinear fitting hints

Nonlinear fitting is rather simple. All that you need is the data to fit, the approximation
formula and the list of coefficients to fit (better with its initial guess values). Let me
demonstrate it on the following simple example. First, let us use sin function with some
random noise:

new rnd 100 ’0.4*rnd+0.1+sin(2*pi*x)’
new in 100 ’0.3+sin(2*pi*x)’
and plot it to see that data we will fit
title ’Fitting sample’:yrange -2 2:box:axis:plot rnd ’. ~’
The next step is the fitting itself. For that let me specify an initial values ini for
coefficients ‘abc’ and do the fitting for approximation formula ‘a+b*sin(c*x)’
list ini 1 1 3:fit res rnd ’a+tb*sin(c*x)’ ’abc’ ini
Now display it
plot res ’r’:plot in ’b’
text -0.9 -1.3 ’fitted:’ ’r:L’
putsfit 0 -1.8 ’y =’ ’r’
text 0 2.2 ’initial: y = 0.3+sin(2\pi %)’ ’b’
NOTE! the fitting results may have strong dependence on initial values for coefficients
due to algorithm features. The problem is that in general case there are several local
"optimums" for coefficients and the program returns only first found one! There are no

guaranties that it will be the best. Try for example to set ini[3] = {0, 0, 0} in the code
above.

The full sample code for nonlinear fitting is:

new rnd 100 ’0.4*rnd+0.1+sin(2*pi*x)’
new in 100 ’0.3+sin(2*pi*x)’
list ini 1 1 3:fit res rnd ’a+b*sin(c*x)’ ’abc’ ini



Chapter 5: MathGL examples 138

title ’Fitting sample’:yrange -2 2:box:axis:plot rnd ’. °’
plot res ’r’:plot in ’b’

text -0.9 -1.3 ’fitted:’ ’r:L’

putsfit 0 -1.8 ’y =’ ’r’

text 0 2.2 ’initial: y = 0.3+sin(2\pi x)’ ’b’

Fitting sample

initial: y = 0.3+sin(2xx)

N I I T

- fitted:
T y=03 110447+0.99%631*sin(6.2i4679*x)
-1 -0.5 0 0.5 1

5.9.12 PDE solving hints

Solving of Partial Differential Equations (PDE, including beam tracing) and ray tracing (or
finding particle trajectory) are more or less common task. So, MathGL have several func-
tions for that. There are mglRay() for ray tracing, mglPDE() for PDE solving, mglQ02d ()
for beam tracing in 2D case (see Section 4.11 [Global functions]|, page 53). Note, that these
functions take “Hamiltonian” or equations as string values. And I don’t plan now to allow
one to use user-defined functions. There are 2 reasons: the complexity of corresponding
interface; and the basic nature of used methods which are good for samples but may not
good for serious scientific calculations.

The ray tracing can be done by mglRay() function. Really ray tracing equation is
Hamiltonian equation for 3D space. So, the function can be also used for finding a particle
trajectory (i.e. solve Hamiltonian ODE) for 1D, 2D or 3D cases. The function have a set of
arguments. First of all, it is Hamiltonian which defined the media (or the equation) you are
planning to use. The Hamiltonian is defined by string which may depend on coordinates
‘X', 'y’, ‘2, time ‘¢’ (for particle dynamics) and momentums ‘p’=p,, ‘q’=p,, ‘v’=p,. Next,
you have to define the initial conditions for coordinates and momentums at ‘t’=0 and set
the integrations step (default is 0.1) and its duration (default is 10). The Runge-Kutta

method of 4-th order is used for integration.

const char *ham = “pA2+q”2—X—1+i*O.5*(y+x)*(y>—x)";
mglData r = mglRay(ham, mglPoint(-0.7, -1), mglPoint(0, 0.5), 0.02, 2);



Chapter 5: MathGL examples 139

This example calculate the reflection from linear layer (media with Hamiltonian
‘p"2+q"2-x-1'=p2 + p> — x — 1). This is parabolic curve. The resulting array have 7
columns which contain data for {x,y,z,p,q,v,t}.

The solution of PDE is a bit more complicated. As previous you have to specify the equa-
tion as pseudo-differential operator “H (z, V) which is called sometime as “Hamiltonian”
(for example, in beam tracing). As previously, it is defined by string which may depend
on coordinates ‘x’, ‘y’, ‘2’ (but not time!), momentums ‘p’=(d/dx)/iko, ‘q’=(d/dy)/iky and
field amplitude ‘u’=|u|. The evolutionary coordinate is ‘z’ in all cases. So that, the equation
look like du/dz = ikoH (z,y, "p, "q,|u|)[u]. Dependence on field amplitude ‘w’=|u| allows
one to solve nonlinear problems too. For example, for nonlinear Shrodinger equation you
may set ham="p~2 + q~2 - u”2". Also you may specify imaginary part for wave absorp-
tion, like ham = "p~2 + i*x*(x>0)", but only if dependence on variable ‘i’ is linear (i.e.
H = Hre+ix Him).

Next step is specifying the initial conditions at ‘z’=Min.z. The function need 2 arrays
for real and for imaginary part. Note, that coordinates x,y,z are supposed to be in specified
range [Min, Max]. So, the data arrays should have corresponding scales. Finally, you may
set the integration step and parameter kO=Fk,. Also keep in mind, that internally the 2 times
large box is used (for suppressing numerical reflection from boundaries) and the equation
should well defined even in this extended range.

Final comment is concerning the possible form of pseudo-differential operator H. At this
moment, simplified form of operator H is supported — all “mixed” terms (like ‘x*p’->x*d/dx)
are excluded. For example, in 2D case this operator is effectively H = f(p, z) + g(z, z, u).
However commutable combinations (like ‘xxq’->x*d/dy) are allowed for 3D case.

So, for example let solve the equation for beam deflected from linear layer and absorbed
later. The operator will have the form ‘"p~2+q~2-x-1+i*0.5% (z+x) *(z>-x)"’ that corre-
spond to equation ikoO,u + Au+ - u + i(x + z)/2 - uw = 0. This is typical equation for
Electron Cyclotron (EC) absorption in magnetized plasmas. For initial conditions let me
select the beam with plane phase front exp(—48 x (x4 0.7)?). The corresponding code looks
like this:

new re 128 ’exp(-48*(x+0.7)72)’:new im 128

pde a ’p~2+q~2-x-1+i*0.5%(z+x)*(z>-x)’ re im 0.01 30

transpose a

subplot 1 1 0 ’<_’:title ’PDE solver’

axis:xlabel ’\i x’:ylabel ’\i z’

crange O l:dens a ’wyrRk’

fplot ’-x’ ’k|’

text 0 0.95 ’Equation: ik_O\partial_zu + \Delta u + x\cdot u +\
i \frac{x+z}{2}\cdot u = O\n{}absorption: (x+z)/2 for x+z>0’



Chapter 5: MathGL examples 140

PDE solver

N —r Equation: ikedu + Au+ xu +iZu=0
. > . absorption: (x+z)/2 for x+z>0

o
(=1
ok
" C
<L

—[|_ Lo

-1 1

X

The last example is example of beam tracing. Beam tracing equation is special kind
of PDE equation written in coordinates accompanied to a ray. Generally this is the same
parameters and limitation as for PDE solving but the coordinates are defined by the ray
and by parameter of grid width w in direction transverse the ray. So, you don’t need to
specify the range of coordinates. BUT there is limitation. The accompanied coordinates are
well defined only for smooth enough rays, i.e. then the ray curvature K (which is defined
as 1/K?* = (|#[*|7]* — (#,7)?)/|7|®) is much large then the grid width: K >> w. So, you
may receive incorrect results if this condition will be broken.

You may use following code for obtaining the same solution as in previous example:

define $1 ’p~2+q~2-x—1+i*0.5* (y+x)*(y>-x)’

subplot 1 1 0 ’<_’:title ’Beam and ray tracing’

ray r $1 -0.7 -1 0 0 0.5 0 0.02 2:plot r(0) r(1) ’k’
axis:xlabel ’\i x’:ylabel ’\i z’

new re 128 ’exp(-48+%x~2)’:new im 128

new xx l:new yy 1

qo2d a $1 re im r 1 30 xx yy

crange 0 1:dens xx yy a ’wyrRk’:fplot ’-x’ ’k|’

text 0 0.85 ’absorption: (x+y)/2 for x+y>0’

text 0.7 -0.05 ’central ray’



Chapter 5: MathGL examples 141

Beam and ray tracing

2N _ absorption: (x+y)/2 for x+y>0

5.9.13 MGL parser using

MGL scripts can contain loops, conditions and user-defined functions. Below I show very
simple example of its usage:

title ’MGL parser sample’
call ’sample’
stop

func ’sample’

new dat 100 ’sin(2*pix(x+1))’
plot dat; xrange O 1
box:axis:xlabel ’x’:ylabel ’y’
for $0 -1 1 0.1

if $0<0

line 0 0 -1 $0 ’r’
else

line 0 0 -1 $0 ’r’
endif

next



Chapter 5: MathGL examples 142

MGL parser sample

T T T

5.9.14 Using options

Section 2.7 [Command options|, page 10 allow the easy setup of the selected plot by chang-
ing global settings only for this plot. Often, options are used for specifying the range of
automatic variables (coordinates). However, options allows easily change plot transparency,
numbers of line or faces to be drawn, or add legend entries. The sample function for options
usage is:

new a 31 41 ’-pixx*exp(-(y+1) 2-4*x"2)"

alpha on:light on

subplot 2 2 0O:title ’Options for coordinates’:rotate 40 60:box
surf a ’r’;yrange O 1

surf a ’b’;yrange 0 -1

subplot 2 2 1:title ’Option "meshnum"’:rotate 40 60:box
mesh a ’r’; yrange 0 1
mesh a ’b’;yrange 0 -1; meshnum 5

subplot 2 2 2:title ’Option "alpha"’:rotate 40 60:box
surf a ’r’;yrange O 1; alpha 0.7
surf a ’b’;yrange O -1; alpha 0.3

subplot 2 2 3 ’<_’:title ’Option "legend"’
fplot ’x73’ ’r’; legend ’y = x"3’

fplot ’cos(pi*x)’ ’b’; legend ’y = cos \pi x’
box:axis:legend 2



Chapter 5: MathGL examples 143

Options for coordinates Option ‘'meshnum’

5.9.15 “Templates”

As I have noted before, the change of settings will influence only for the further plotting
commands. This allows one to create “template” function which will contain settings and
primitive drawing for often used plots. Correspondingly one may call this template-function
for drawing simplification.

For example, let one has a set of points (experimental or numerical) and wants to com-

pare it with theoretical law (for example, with exponent law exp(—z/2),z € [0,20]). The
template-function for this task is:

void template(mglGraph *gr)

{

mglData 1law(100); // create the law
law.Modify("exp(-10*x)") ;

gr->SetRanges (0,20, 0.0001,1);

gr->SetFunc(0,"1g(y)",0);

gr->Plot (law,"r2");

gr->Puts (mglPoint (10,0.2) ,"Theoretical law: e"x","r:L");
gr->Label(°x’,"x val."); gr->Label(’y’,"y val.");
gr->Axis(); gr->Grid("xy","g;"); gr->Box();

At this, one will only write a few lines for data drawing;:

template(gr); // apply settings and default drawing from template
mglData dat("fname.dat"); // load the data

// and draw it (suppose that data file have 2 columns)

gr->Plot (dat.SubData(0),dat.SubData(1),"bx ");

A template-function can also contain settings for font, transparency, lightning, color

scheme and so on.



Chapter 5: MathGL examples 144

I understand that this is obvious thing for any professional programmer, but I several
times receive suggestion about “templates” ... So, I decide to point out it here.

5.9.16 Stereo image

One can easily create stereo image in MathGL. Stereo image can be produced by making
two subplots with slightly different rotation angles. The corresponding code looks like this:

call ’prepare2d’

light on

subplot 2 1 O:rotate 50 60+1:box:surf a
subplot 2 1 1:rotate 50 60-1:box:surf a

5.9.17 Reduce memory usage

By default MathGL save all primitives in memory, rearrange it and only later draw them on
bitmaps. Usually, this speed up drawing, but may require a lot of memory for plots which
contain a lot of faces (like [cloud], page 34, [dew], page 38). You can use [quality], page 20
function for setting to use direct drawing on bitmap and bypassing keeping any primitives
in memory. This function also allow you to decrease the quality of the resulting image but
increase the speed of the drawing.

The code for lower memory usage looks like this:

quality 6 # firstly, set to draw directly on bitmap
for $1 0 1000

sphere 2*rnd-1 2*rnd-1 0.05
next



Chapter 5: MathGL examples 145

5.10 FAQ

The plot does not appear
Check that points of the plot are located inside the bounding box and resize
the bounding box using [ranges|, page 15 function. Check that the data have
correct dimensions for selected type of plot. Sometimes the light reflection from
flat surfaces (like, [dens], page 32) can look as if the plot were absent.

I can not find some special kind of plot.
Most “new” types of plots can be created by using the existing drawing func-
tions. For example, the surface of curve rotation can be created by a special
function [torus], page 30, or as a parametrically specified surface by [surf],
page 31. See also, Section 5.9 [Hints|, page 125. If you can not find a specific
type of plot, please e-mail me and this plot will appear in the next version of

MathGL library.

How can I print in Russian/Spanish/Arabic/Japanese, and so on?
The standard way is to use Unicode encoding for the text output. But the
MathGL library also has interface for 8-bit (char *) strings with internal con-
version to Unicode. This conversion depends on the current locale OS.

How can I exclude a point or a region of plot from the drawing?
There are 3 general ways. First, the point with nan value as one of the coordi-
nates (including color/alpha range) will never be plotted. Second, special func-
tions define the condition when the points should be omitted (see Section 3.2.5
[Cutting], page 14). Last, you may change the transparency of a part of the
plot by the help of functions [surfa], page 36, [surf3a], page 36 (see Section 3.13
[Dual plotting], page 35). In last case the transparency is switched on smoothly.

How many people write this library?
Most of the library was written by one person. This is a result of nearly a year
of work (mostly in the evening and on holidays): I spent half a year to write the
kernel and half a year to a year on extending, improving the library and writing
documentation. This process continues now :). The build system (cmake files)
was written mostly by D.Kulagin, and the export to PRC/PDF was written
mostly by M.Vidassov.

How can I display a bitmap on the figure?
You can import data by command [import], page 47 and display it by [dens],
page 32 function. For example, for black-and-white bitmap you can use the
code: import bmp ’fname.png’ ’wk’:dens bmp ’wk’.

How can I create 3D in PDF?
Just use command write fname.pdf, which create PDF file if enable-pdf=0N
at MathGL configure.

How can I create TeX figure?
Just use command write fname.tex, which create LaTeX files with figure
itself ‘fname.tex’, with MathGL colors ‘mglcolors.tex’ and main file
‘mglmain.tex’. Last one can be used for viewing image by command like
pdflatex mglmain.tex.



Chapter 5: MathGL examples 146

How I can change the font family?

First, you should download new font files from here or from here. Next,
you should load the font files into by the following command: loadfont

’fontname’. Here fontname is the base font name like ‘STIX’. Use loadfont
2 to start using the default font.

How can I draw tick out of a bounding box?

Just set a negative value in [ticklen], page 18. For example, use ticklen -0.1.
How can I prevent text rotation?

Just use rotatetext off. Also you can use axis style ‘U’ for disable only tick
labels rotation.

How can I draw equal axis range even for rectangular image?

Just use aspect nan nan for each subplot, or at the beginning of the drawing.


http://mathgl.sourceforge.net/download.html
http://sourceforge.net/project/showfiles.php?group_id=152187&package_id=267177

Appendix A: Symbols and hot-keys 147

Appendix A Symbols and hot-keys

This appendix contain the full list of symbols (characters) used by MathGL for setting up
plot. Also it contain sections for full list of hot-keys supported by mglview tool and by
UDAYV program.

A.1 Symbols for styles

Below is full list of all characters (symbols) which MathGL use for setting up the plot.

‘space ’ 7’

empty line style (see Section 2.3 [Line styles|, page 5);
empty color in [chart], page 28.

set to use new color from palette for each point (not for each curve, as default)
in Section 3.10 [1D plotting], page 26.

set to use solid marks (see Section 2.3 [Line styles|, page 5) or solid [error],
page 29 boxes;

set to draw wired plot for [axial], page 33, [surf3], page 33, [surf3al], page 36,
[surf3c], page 36, [triplot], page 40, [quadplot], page 41, [area], page 27, [bars],
page 28, [barh], page 28, [tube], page 30, [tape|, page 27, [cone], page 22, [boxs],
page 31 and draw boundary only for [circle], page 22, [ellipse], page 23, [rhomb],
page 23;

set to draw also mesh lines for [surf], page 31, [surfc|, page 35, [surfa], page 36,
[dens]|, page 32, [densx], page 39, [densy], page 39, [densz], page 39, [dens3],
page 34, or boundary for [chart], page 28, [facex]|, page 22, [facey]|, page 22,
[facez|, page 22, [rect], page 22;

set to draw boundary and box for [legend], page 26, [title], page 19, or grid lines
for [table], page 30;

set to draw grid for [radar|, page 27;

set to start flow threads and pipes from edges only for [flow], page 38, [pipe],
page 39;

set to use whole are for axis range in [subplot], page 18, [inplot], page 19;
change text color inside a string (see Section 2.5 [Font styles|, page 8);

start comment in Chapter 1 [MGL scripts], page 1 or in Section 2.7 [Command
options], page 10.

denote parameter of Chapter 1 [MGL scripts|, page 1.

operation in Section 2.6 [Textual formulas], page 9.

denote string in Chapter 1 [MGL scripts], page 1 or in Section 2.7 [Command
options], page 10.

one of marks (see Section 2.3 [Line styles|, page 5);

operation in Section 2.6 [Textual formulas], page 9.



Appendix A: Symbols and hot-keys 148

one of marks (see Section 2.3 [Line styles|, page 5) or kind of [error|, page 29
boxes;

operation in Section 2.6 [Textual formulas], page 9.

separator for color positions (see Section 2.2 [Color styles|, page 5) or items in
a list.

solid line style (see Section 2.3 [Line styles|, page 5);

place entries horizontally in [legend], page 26;

operation in Section 2.6 [Textual formulas], page 9.

one of marks (see Section 2.3 [Line styles|, page 5);
set to draw hachures instead of arrows for [vect], page 37, [vect3], page 38;

set to use dots instead of faces for [cloud], page 34, [torus|, page 30, [axiall,
page 33, [surf3], page 33, [surf3a], page 36, [surf3c], page 36, [surf], page 31,
[surfa], page 36, [surfc], page 35, [dens], page 32, [map], page 36;

delimiter of fractional parts for numbers.
operation in Section 2.6 [Textual formulas], page 9.

line dashing style (see Section 2.3 [Line styles|, page 5);
stop color scheme parsing (see Section 2.4 [Color scheme|, page 6);

range operation in Chapter 1 [MGL scripts], page 1.

line dashing style (see Section 2.3 [Line styles|, page 5);

end of an option in Chapter 1 [MGL scripts], page 1 or in Section 2.7 [Command
options], page 10.

one of marks (see Section 2.3 [Line styles|, page 5);

style of [subplot], page 18 and [inplot], page 19;

set position of [colorbar], page 24;

style of [vect], page 37, [vect3], page 38;

operation in Section 2.6 [Textual formulas], page 9.

one of marks (see Section 2.3 [Line styles|, page 5);
style of [subplot], page 18 and [inplot], page 19;
set position of [colorbar]|, page 24;

style of [vect], page 37, [vect3], page 38;

operation in Section 2.6 [Textual formulas], page 9.

line dashing style (see Section 2.3 [Line styles|, page 5);
set to use equidistant columns for [table], page 30;
set to use color gradient for [vect], page 37, [vect3], page 38;

operation in Section 2.6 [Textual formulas], page 9.

set to draw box around text for [text], page 23 and similar functions;

set to draw boundary and fill it for [circle], page 22, [ellipse], page 23, [rhomb],
page 23;



Appendix A: Symbols and hot-keys 149

(e~

([]7

L{}?

(\7

set to fill faces for [box], page 25;

set to draw large semitransparent mark instead of error box for [error|, page 29;
set to draw edges for [cone|, page 22;

set to draw filled boxes for [boxs|, page 31;

reduce text size inside a string (see Section 2.5 [Font styles], page 8).

one of marks (see Section 2.3 [Line styles|, page 5);

style of [subplot], page 18 and [inplot], page 19;

set position of [colorbar], page 24;

switch to upper index inside a string (see Section 2.5 [Font styles|, page 8);

operation in Section 2.6 [Textual formulas], page 9.

empty arrow style (see Section 2.3 [Line styles], page 5);
disable drawing of tick labels for [axis]|, page 24;

style of [subplot], page 18 and [inplot], page 19;

set position of [colorbar]|, page 24;

set to draw contours at bottom for [cont], page 32, [contf], page 32, [contd],
page 32, [contv], page 33, [tricont], page 41;

switch to lower index inside a string (see Section 2.5 [Font styles|, page 8).
contain symbols excluded from color scheme parsing (see Section 2.4 [Color
scheme], page 6).

contain extended color specification (see Section 2.2 [Color styles|, page 5);
denote special operation in Chapter 1 [MGL scripts|, page 1;

denote 'meta-symbol’ for LaTeX like string parsing (see Section 2.5 [Font styles],
page 8).

line dashing style (see Section 2.3 [Line styles|, page 5);

set to use sharp color scheme (see Section 2.4 [Color scheme]|, page 6);

set to limit width by subplot width for [table], page 30;

delimiter in [list], page 45 command;

operation in Section 2.6 [Textual formulas], page 9.

string continuation symbol on next line for Chapter 1 [MGL scripts], page 1.

‘0,1,2,3,4,5,6,7,8,9’

line width (see Section 2.3 [Line styles], page 5);
brightness of a color (see Section 2.2 [Color styles|, page 5);
kind of smoothing (for digits 1,3,5) in [smooth|, page 50;

digits for a value.

‘A,B,C,D,E,F,a,b,c,d,e,f’

can be hex-digit for color specification if placed inside {} (see Section 2.2 [Color
styles], page 5).



Appendix A: Symbols and hot-keys 150

‘w arrow style (see Section 2.3 [Line styles|, page 5);
set to use absolute position in whole picture for [text], page 23, [colorbar],
page 24, [legend], page 26.

a set to use absolute position in subplot for [text], page 23;

style of [bars], page 28, [barh], page 28.
‘B’ dark blue color (see Section 2.2 [Color styles|, page 5).

‘b’ blue color (see Section 2.2 [Color styles|, page 5);
bold font face if placed after ‘:’ (see Section 2.5 [Font styles], page 8).

‘c’ dark cyan color (see Section 2.2 [Color styles|, page 5);

¢,

align text to center if placed after ‘:’ (see Section 2.5 [Font styles|, page 8).

c cyan color (see Section 2.2 [Color styles|, page 5);
name of color axis;

cosine transform for [transform|, page 53.

‘D’ arrow style (see Section 2.3 [Line styles|, page 5).

‘@’ one of marks (see Section 2.3 [Line styles|, page 5) or kind of [error], page 29
boxes.

‘E dark green-yellow color (see Section 2.2 [Color styles|, page 5).

‘e’ green-yellow color (see Section 2.2 [Color styles|, page 5).

‘£ style of [bars|, page 28, [barh], page 28;

style of [vect], page 37, [vect3], page 38;

Fourier transform for [transform]|, page 53.

‘@’ dark green color (see Section 2.2 [Color styles], page 5).
‘g’ green color (see Section 2.2 [Color styles|, page 5).

‘" dark gray color (see Section 2.2 [Color styles], page 5).
‘h’ gray color (see Section 2.2 [Color styles], page 5);

Hankel transform for [transform|, page 53.

‘T arrow style (see Section 2.3 [Line styles|, page 5);

set [colorbar]|, page 24 position near boundary.

i line dashing style (see Section 2.3 [Line styles|, page 5);

italic font face if placed after ‘:’ (see Section 2.5 [Font styles|, page 8).

set to use inverse values for [cloud], page 34, [pipe]|, page 39, [dew], page 38;
set to fill only area with yl<y<y2 for [region|, page 27;

inverse Fourier transform for [transform|, page 53.
j line dashing style (see Section 2.3 [Line styles|, page 5);
‘K’ arrow style (see Section 2.3 [Line styles|, page 5).



Appendix A: Symbols and hot-keys 151

LU7

black color (see Section 2.2 [Color styles], page 5).
dark green-blue color (see Section 2.2 [Color styles|, page 5);

)

align text to left if placed after ‘:’ (see Section 2.5 [Font styles], page 8).
green-blue color (see Section 2.2 [Color styles|, page 5).

dark magenta color (see Section 2.2 [Color styles|, page 5).

magenta color (see Section 2.2 [Color styles|, page 5).

dark sky-blue color (see Section 2.2 [Color styles|, page 5).

sky-blue color (see Section 2.2 [Color styles], page 5).

arrow style (see Section 2.3 [Line styles|, page 5).

one of marks (see Section 2.3 [Line styles|, page 5) or kind of [error|, page 29
boxes;

over-line text if placed after ‘:’ (see Section 2.5 [Font styles|, page 8).
dark purple color (see Section 2.2 [Color styles|, page 5).

purple color (see Section 2.2 [Color styles|, page 5).

dark orange or brown color (see Section 2.2 [Color styles|, page 5).
orange color (see Section 2.2 [Color styles|, page 5).

dark red color (see Section 2.2 [Color styles], page 5);

]

align text to right if placed after ‘:” (see Section 2.5 [Font styles|, page 8).

red color (see Section 2.2 [Color styles], page 5).

arrow style (see Section 2.3 [Line styles|, page 5);

one of marks (see Section 2.3 [Line styles|, page 5) or kind of [error], page 29

boxes;

sine transform for [transform|, page 53.

arrow style (see Section 2.3 [Line styles|, page 5);
place text under the curve for [text], page 23, [cont], page 32, [cont3], page 34.

set to draw text labels for [cont], page 32, [cont3], page 34;

name of t-axis (one of ternary axis);

variable in Section 2.6 [Textual formulas|, page 9, which usually is varied in
range [0,1].

dark blue-violet color (see Section 2.2 [Color styles|, page 5);

disable rotation of tick labels for [axis|, page 24.

blue-violet color (see Section 2.2 [Color styles], page 5);
under-line text if placed after ‘:” (see Section 2.5 [Font styles|, page 8);
name of u-axis (one of ternary axis);

variable in Section 2.6 [Textual formulas|, page 9, which usually denote array
itself.



Appendix A: Symbols and hot-keys 152

arrow style (see Section 2.3 [Line styles|, page 5).

one of marks (see Section 2.3 [Line styles|, page 5);

set to draw vectors on flow threads for [flow], page 38.
bright gray color (see Section 2.2 [Color styles|, page 5).

white color (see Section 2.2 [Color styles]|, page 5);

wired text if placed after ‘:’ (see Section 2.5 [Font styles|, page 8);

name of w-axis (one of ternary axis);

one of marks (see Section 2.3 [Line styles|, page 5) or kind of [error|, page 29
boxes;

name of x-axis or x-direction or 1st dimension of a data array;

start hex-color described if placed inside {} (see Section 2.2 [Color styles],
page 5);
style of [tape], page 27.

dark yellow or gold color (see Section 2.2 [Color styles|, page 5).
yellow color (see Section 2.2 [Color styles], page 5);

name of y-axis or y-direction or 2nd dimension of a data array.

name of z-axis or z-direction or 3d dimension of a data array;

style of [tape], page 27.

A.2 Hot-keys for mglview

Key
Ctrl-P

Ctrl-w
Ctrl-T
Ctrl-L
Ctrl-Space
F5

F6

Ctrl-F5

Description
Open printer dialog and print graphics.

Close window.

Switch on/off transparency for the graphics.

Switch on/off additional lightning for the graphics.
Restore default graphics rotation, zoom and perspective.
Execute script and redraw graphics.

Change canvas size to fill whole region.

Run slideshow. If no parameter specified then the dialog with
slideshow options will appear.



Appendix A: Symbols and hot-keys 153

Ctrl-Comma, Ctrl-Period

Ctrl-Shift-G
Alt-P
Alt-F
Alt-J
Alt-E
Alt-8
Alt-L
Alt-M
Alt-D

Alt-0

Show next/previous slide. If no parameter specified then the
dialog with slideshow options will appear.

Copy graphics to clipboard.
Export as semitransparent PNG.
Export as solid PNG.

Export as JPEG.

Export as vector EPS.

Export as vector SVG.

Export as LaTeX/Tikz image.
Export as MGLD.

Export as PRC/PDF.

Export as OBJ.

A.3 Hot-keys for UDAV

Key
Ctrl-N

Ctrl-0

Ctrl-S
Ctrl-P
Ctrl-Z
Ctrl-Shift-Z
Ctrl-X

Ctrl-C

Description

Create new window with empty script. Note, all scripts share
variables. So, second window can be used to see some addi-
tional information of existed variables.

Open and execute/show script or data from file. You may
switch off automatic exection in UDAV properties

Save script to a file.

Open printer dialog and print graphics.
Undo changes in script editor.

Redo changes in script editor.

Cut selected text into clipboard.

Copy selected text into clipboard.



Appendix A: Symbols and hot-keys 154

Ctrl-Vv

Ctrl-A

Ctrl-F

F3

Win-C or Meta-C

Win-F or Meta-F

Win-S or Meta-S

Win-0 or Meta-0

Win-N or Meta-N

Win-P or Meta-P

Win-G or Meta-G

Ctrl-Shift-0

Ctrl-Shift-S

Ctrl-Shift-C

Ctrl-Shift-V

Ctrl-Shift-N

Ctrl-Shift-R

Ctrl-Shift-T

Ctrl-Shift-M

Ctrl-Shift-H

Ctrl-T

Paste selected text from clipboard.

Select all text in editor.

Show dialog for text finding.

Find next occurrence of the text.

Show dialog for new command and put it into the script.
Insert last fitted formula with found coefficients.

Show dialog for styles and put it into the script. Styles define
the plot view (color scheme, marks, dashing and so on).

Show dialog for options and put it into the script. Options
are used for additional setup the plot.

Replace selected expression by its numerical value.

Select file and insert its file name into the script.

Show dialog for plot setup and put resulting code into the
script. This dialog setup axis, labels, lighting and other gen-

eral things.

Load data from file. Data will be deleted only at exit but
UDAYV will not ask to save it.

Save data to a file.

Copy range of numbers to clipboard.

Paste range of numbers from clipboard.

Recreate the data with new sizes and fill it by zeros.
Resize (interpolate) the data to specified sizes.
Transform data along dimension(s).

Make another data.

Find histogram of data.

Switch on/off transparency for the graphics.



Appendix A: Symbols and hot-keys 155

Ctrl-L
Ctrl-G
Ctrl-Space
F5

F6

F7

F9

Ctrl-F5

Ctrl-Comma, Ctrl-Period

Ctrl-Ww

Ctrl-Shift-G

F1

F2

F4

Meta-Shift-Up,
Meta-Shift-Down
Meta-Shift-Left,
Meta-Shift-Right
Alt-Minus, Alt-Equal
Alt-Up, Alt-Down,
Alt-Right, Alt-Left
Alt-P

Alt-F

Alt-J

Alt-E

Switch on/off additional lightning for the graphics.
Switch on/off grid of absolute coordinates.

Restore default graphics rotation, zoom and perspective.
Execute script and redraw graphics.

Change canvas size to fill whole region.

Stop script execution.

Restore status for ’once’ command and reload data.

Run slideshow. If no parameter specified then the dialog with
slideshow options will appear.

Show next/previous slide. If no parameter specified then the
dialog with slideshow options will appear.

Open dialog with slideshow options.

Copy graphics to clipboard.

Show help on MGL commands

Show /hide tool window with messages and information.

Show /hide calculator which evaluate and help to type textual
formulas. Textual formulas may contain data variables too.

Change view angle 6.

Change view angle ¢.

Zoom in/out whole image.

Shift whole image.

Export as semitransparent PNG.
Export as solid PNG.

Export as JPEG.

Export as vector EPS.



Appendix A: Symbols and hot-keys

Alt-8S

Alt-L

Alt-M

Alt-D

Alt-0

Export as vector SVG.

Export as LaTeX/Tikz image.

Export as MGLD.
Export as PRC/PDF.

Export as OBJ.

156



Appendix B: GNU Free Documentation License 157

Appendix B GNU Free Documentation License

Version 1.2, November 2002

Copyright (©) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released



Appendix B: GNU Free Documentation License 158

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and



Appendix B: GNU Free Documentation License 159

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.



Appendix B: GNU Free Documentation License 160

o

N.

0.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.



Appendix B: GNU Free Documentation License 161

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called



Appendix B: GNU Free Documentation License 162

10.

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.


http://www.gnu.org/copyleft/

Appendix B: GNU Free Documentation License 163

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.



Index

Index

A

AddLegend . ... 25
Adjust .o 17
alpha. ... ..o 10
Alpha . ..o 12
alphadef. ... ... ... 10
AlphaDef......... ... 12
Ambient........... . 13
Area . ... 26
ATTOWS .« oot 5
ArTOWSIZE . o oo 13
ask .. 2
ASDECE v 18
Axial. ..o 30
A XIS 16, 24
AxisStl. ... 17
B

Ball ..o 21
Barh ... 26
Bars. ... 26
BarWidth ............ ... .. ... ... 13
Beam ........ ... 33
Belt ... 30
Box ..o 24
BoxPlot ... 26
BoOXS .o 30
C

call. .o 3
Candle.......... ... ... ... ... ... 26
Chart ... 26
chdir ... ... 2
Cleam . .ooo et 44
ClearLegend . ... ...t 25
Cl e 21
Cloud ........... 33
Colorscheme ............ooiiiiiiiiiiniin.. 6
ColoTbar ... 24
Column ..ot 48
ColumnPlot ........... ... ... . 18
Combine ... 48
COME . vt 21
COMES o oottt 26
Cont oo 30
Contd .o 33
ContD ... 30
ContF ... 30
ContF3. . 33
ContFXY Z .o 39
ContXYZ ... 039

164
CRANGE - e 15
(@ < 44
CrOD et 44
CrUS . e et 39
CTaCK e 17
CumSumL . ..t 49
CULVE . ot e 21
0 10
CUb oo 14
D
DataGrid. ... 42
defchr . ... 2
define ... ... 2
defnum . ..... ... 2
defpal ... 3
Delete. ... 44
Dens ... 30
Densd ... 33
DensXYZ ..o 39
Dew. . 37
D . 49
Diff2 ... 49
Dots .o 39
Drop ..o 21
E
elSe . 3
elseif ... 3
endif ... ... 3
Envelop ... 49
Error.... ... . . 26
Evaluate ........... .. ... .. 48
Export ... 47
Extend...... ... 44
F
Face...... 21
FaceX .. ... 21
FaceY ... 21
FaceZ ... ... 21
Fall .. 30
fgets oo 23
Fill ..o 42, 45
Bt 41
it . 41
Fit3 . 41
it . 41
Flow ... 37
FlowP ... ..o 37
Fog.. ..o 13
Font..... ... . 14



Index

Font styles. ... 8
fONtSIZE . . oo 10
for .o 3
FPIot .o 39
FSurf. ... ... 39
UNC . 3
G

GetN X . e 51
GetNy . o 51
GetNzZ. .o 51
Glyph ... 21
Grad ... 30
Grid ..o 24, 30
Grid3 .o 33
H

Hankel ......... . ... 49
Hist ..o 42, 48
I

e 3
Import ... 47
InPlot.........o i 18
Insert ... 44
Integral ........ ... .. 49
J

JOIm . o 44
L

Label ... 23, 24, 26
legend. ... 11
Legend ... i 25
Light. ..o 13
Line. ... ... 21
Line style. ... 5
Last .o 45
M

MaD . e 35
MarKk. ... 26
Mark style. ... 5
MarkSize . ....oooii i 13
MathGL setup......c.ovviiiiiiiii i 12
MaX . et 48
Maximal ....... ... 51
Mesh. ... 30
meshnum......... ... ... ... . 10
MeshNum ... 13
mglData........... 44

mglFitPnts........... o 41

165
mglGraph ....... ... o 12
Min ..o 48
Minimal . ........ ... 51
Mirror. ... 49
Modify ..o 45
Momentum ..................... ... ....... 48, 52
MultiPlot .......... . 18
N
TIEXE o ettt et e 3
NOTI .« 49
NormSl. ... 49
O
1034 T PPt 3
Origin. ..o 15
P
Palette....... ... 15
Perspective...... ... o i 18
Pipe. oo 37
Plot ..o 26
Pop ..o 18
PrintInfo........... ... .. ... . .. 51
Push ... ... 18
PutsFit.......... .. 41
Q
QuadPlot....... .. ..o 39
R
Radar....... ... 26
Ranges....... ..o o 15
Read...... ... 47
ReadAll . ... .. 47
ReadHDF ............. . ... .. ... ... ... .... 47
ReadMat .......... .. ... i 47
ReadRange........... ... . i 47
Rearrange.......... ... i it 44
Region ... i 26
Resize.... ... 48
TEbUIN . .o e 3
Roll...o 49
Roots ... 48
Rotate ... 18
RotateN ... ... .. o 18
RotateText....... .o 14
S
SV . et 47
SaveHDF ... .. ... . .. 47
St 45



Index

SetLegendBox ... 25
SetLegendMarks................. ... . L. 25
SEUSIZE .« v 20
S OW it 49
SINEF T 49
Smooth ....... .. 49
STt et 44
Sphere . ... 21
SQUEEZE . . vv e e 44
SEOINL .\t 26
) o 26
STEA . 35
StICKkPIOt .. 18
SHOD e et 3
SubData ... 48
SubPlot ... 18
SUINL. .« et 48
Surf . .o 30
SUrf3 . o 33
Surf3A .. 35
Surf3C .. 35
SurfA .. 35
SurfC ..o 35
SWAD « ¢ttt 49
T

TaADE e 26
Tens .ot 26
TeXt. oo 23
TextMark ... 26
Textual formulas................................ 9
TickLen ... 17
Tale 30
TileS . .o 35

166
TOTUS .« v e 26
Trace. ... 48
Traj. .o 37
Transpose . ..o 44
TranspType ... 12
TriCont «..oovveiii 39
TriPlot ... 39
Tube ... ... o 26
\%
value..... ... 11
Var. . oo 45
VeCt. oo 37
View ... 18
Write. ..o 20
X
D0 152 01 N 10
XRange ... 15
XTick. ..o 17
Y
FTANEZE oo ettt 10
YRange ... 15
YTick....ooooo 17
Z
ZTATIZEC .« o v e ettt ie e et 10
ZRange. ... ... 15
ZTick ... 17



	MGL scripts
	MGL definition
	Program flow commands

	General concepts
	Coordinate axes
	Color styles
	Line styles
	Color scheme
	Font styles
	Textual formulas
	Command options
	Interfaces

	MathGL core
	Create and delete objects
	Graphics setup
	Transparency
	Lighting
	Fog
	Default sizes
	Cutting
	Font settings
	Palette and colors
	Error handling

	Axis settings
	Ranges (bounding box)
	Curved coordinates
	Ticks

	Subplots and rotation
	Export picture
	Export to file
	Frames/Animation
	Bitmap in memory
	Parallelization

	Primitives
	Text printing
	Axis and Colorbar
	Legend
	1D plotting
	2D plotting
	3D plotting
	Dual plotting
	Vector fields
	Other plotting
	Nonlinear fitting
	Data manipulation

	Data processing
	Public variables
	Data constructor
	Data resizing
	Data filling
	File I/O
	Make another data
	Data changing
	Interpolation
	Data information
	Operators
	Global functions
	Evaluate expression
	MGL variables

	MathGL examples
	Basic usage
	Advanced usage
	Subplots
	Axis and ticks
	Curvilinear coordinates
	Colorbars
	Bounding box
	Ternary axis
	Text features
	Legend sample
	Cutting sample

	Data handling
	Array creation
	Change data

	Data plotting
	1D samples
	Plot sample
	Radar sample
	Step sample
	Tens sample
	Area sample
	Region sample
	Stem sample
	Bars sample
	Barh sample
	Cones sample
	Chart sample
	BoxPlot sample
	Candle sample
	Error sample
	Mark sample
	TextMark sample
	Label sample
	Table sample
	Tube sample
	Tape sample
	Torus sample

	2D samples
	Surf sample
	SurfC sample
	SurfA sample
	Mesh sample
	Fall sample
	Belt sample
	Boxs sample
	Tile sample
	TileS sample
	Dens sample
	Cont sample
	ContF sample
	ContD sample
	ContV sample
	Axial sample
	Grad sample

	3D samples
	Surf3 sample
	Surf3C sample
	Surf3A sample
	Cloud sample
	Dens3 sample
	Cont3 sample
	ContF3 sample
	Dens projection sample
	Cont projection sample
	ContF projection sample
	TriPlot and QuadPlot
	Dots sample

	Vector field samples
	Vect sample
	Vect3 sample
	Traj sample
	Flow sample
	Pipe sample
	Dew sample

	Hints
	``Compound'' graphics
	Transparency and lighting
	Types of transparency
	Axis projection
	Adding fog
	Several light sources
	Using primitives
	STFA sample
	Mapping visualization
	Making histogram
	Nonlinear fitting hints
	PDE solving hints
	MGL parser using
	Using options
	``Templates''
	Stereo image
	Reduce memory usage

	FAQ

	Symbols and hot-keys
	Symbols for styles
	Hot-keys for mglview
	Hot-keys for UDAV

	GNU Free Documentation License
	Index

