render

Phoenix 2.0

Joel de Guzman

Dan Marsden

Copyright © 2002-2005 Joel de Guzman, Dan Marsden

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1 0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

Table of Contents

1= = o= PP 2
gL oo (1 1 o o PP 4
S (= L PPN 5
RV 11 - PR 5
[(= = 10 = PPN 6
F N 1010101 1 | PP PPTPPT 6
10001710105] (=SSP PPPPPTRUPPPIN 7
(=7 Y O 0= £ o] £ T PP 7
[S v = 011 3L TP TUPPTPRPIN 8
CONSITUCE, NEW, DEIEIE, CaStS .. .uivuiiiiiiieieie ettt ettt e e et e e et e e e e e e e e e e et e e et e e etesnesneeneens 8
LBZY FUNCLIONS ...t ettt e ettt oottt e et ettt e ettt bt e e et e bt e et e e bt e e e eebaneeeenbaneeeenbnaaeees 9
1 oSO UPTPPP 10
[F S o SO TPPPPTTUTPPPIN 11
1@ (o= 0 4 1o o RO TSP PP SPPPTTI 14
oo £ TP UPRUPRUPR 17
L LT TR 7= PPN 18
F N (0 [0 0 1 1 PP 18
RV 11 - P 19
I e (= = 010 USRI 20
(00101 T | B L = = o= PPN 21
[N o11 11 o PSP PU PP TPPPTTR 21
L600]17] 0= | (TSP PTPTTR TP 22
00 Tox o o [PPN 22
(©07C = o] S TP 23
S 2 < 011 o PSPPI 26
1@ o] o! S TP SPPPTTR 32
R oo PP 34
=] oo O UOTPTTTPPPPTT 38
L0171 = PP 41
F N [0 11 a0 o RSP RUPPPPTRUPPPIN 44
Fp IS o Lol . a0 ot PP 48
F X ox o) £ T = PPN 48
Lo (o g = s 111] o OO PP TPPPTT 51
COMPOSITES TN DELAI ...t ettt e ettt et et e et et e et e e et e e enaans 52
L600] 1710105] oo E PP PP UPPPT 54
L= 070 1o o [T PP TUPPPTPRTPPPIN 56
R AT =" o O o PP UPPTPPN 57
ACKNOWIBAGEIMENL ...ttt ettt ettt ettt oo et et oo ettt oo et e e e e et et e et e e bt et e et r e e e eaa e e e e et aeeennan s 58
L S = 1= 010 PP 59
1

httpo://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

Preface

Functional programming is so called because a program consists entirely of functions. The main program itself
iswritten as a function which receives the program's input as its argument and delivers the program's output as
its result. Typically the main function is defined in terms of other functions, which in turn are defined in terms of
still more functions until at the bottom level the functions are language primitives.

John Hughes-- Why Functional Programming Matters

X

Description

Phoenix enables Functional Programming (FP) in C++. The design and implementation of Phoenix is highly influenced by FC++
by Yannis Smaragdakis and Brian McNamara and the BLL (Boost Lambda Library) by Jaakko Jaarvi and Gary Powell. Phoenix is
ablend of FC++ and BLL using the implementation techniques used in the Spirit inline parser. Phoenix version 2, this version, will
probably be the last release of the library. Phoenix v2 will be the basis of the Phoenix and BLL merger.

Phoenix is a header only library. It is extremely modular by design. One can extract and use only a small subset of the full library,
literally tearing the library into small pieces, without fear that the pieceswon't work anymore. Thelibrary is organized in highly in-
dependent modules and layers.

How to use this manual

The Phoenix library is organized in logical modules. This documentation provides a user's guide and reference for each module in
thelibrary. A simple and clear code exampleisworth ahundred lines of documentation; therefore, the user's guide is presented with
abundant examples annotated and explained in step-wise manner. The user's guide is based on examples: |ots of them.

As much as possible, forward information (i.e. citing a specific piece of information that has not yet been discussed) is avoided in
the user'smanual portion of each module. In many cases, though, it is unavoidabl e that advanced but rel ated topi cs not be interspersed
with the normal flow of discussion. To alleviate this problem, topics categorized as "advanced" may be skipped at first reading.

Some icons are used to mark certain topics indicative of their relevance. These icons precede some text to indicate:

httpo://www.renderx.com/

http://www.cc.gatech.edu/~yannis/fc++/
http://www.boost.org/libs/lambda/doc/index.html
http://spirit.sourceforge.net
http://www.boost.org/libs/lambda/doc/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

Table 1. Icons
Icon Name Meaning
Note Information provided isauxiliary but will
@ give the reader a deeper insight into a
specific topic. May be skipped.
Alert Information provided isof utmost import-
ance.
Tip A potentially useful and helpful piece of
@ information.

This documentation is automatically generated by Spirit QuickBook documentation tool. QuickBook can be found in the Spirit Re-
pository.

Support

Please direct all questions to Spirit's mailing list. You can subscribe to the Spirit Mailing List. The mailing list has a searchable
archive. A search link to this archive is provided in Spirit's home page. You may also read and post messages to the mailing list
through Spirit General NN TP news portal (thanksto Gmane). The news group mirrorsthe mailing list. Hereisalink to the archives:
http://news.gmane.org/gmane.comp.parsers.spirit.general.

...To my dear daughter, Phoenix

httpo://www.renderx.com/

http://spirit.sourceforge.net/repository/applications/show_contents.php
http://spirit.sourceforge.net/repository/applications/show_contents.php
https://lists.sourceforge.net/lists/listinfo/spirit-general
http://spirit.sourceforge.net
news://news.gmane.org/gmane.comp.spirit.general
http://www.gmane.org
http://news.gmane.org/gmane.comp.parsers.spirit.general
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3

H\M\ﬁ

Phoenix 2.0

Introduction

The Phoenix library enables FP techniques such as higher order functions, lambda (unnamed functions), currying (partial function
application) and lazy evaluation in C++. The focus is more on usefulness and practicality than purity, elegance and strict adherence
to FP principles.

FPisaprogramming discipline that is not at all tied to a specific language. FP as a programming discipline can, in fact, be applied
to many programming languages. In the realm of C++ for instance, we are seeing more FP techniques being applied. C++ issufficiently
rich to support at least some of the most important facets of FP. C++ isamulti-paradigm programming language. It is not only pro-
cedural. It is not only object oriented. Benegath the core of the standard C++ library, a closer look into STL gives us aglimpse of FP
already in place. It is obvious that the authors of STL know and practice FP. In the near future, we shall surely see more FP trickle
down into the mainstream.

Thetruthis, most of the FP techniques can coexist quite well with the standard object oriented and imperative programming paradigms.
When we areusing STL agorithms and functors (function objects) for example, we are aready doing FP. Phoenix isan evolutionary
next step.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

Starter Kit

Most "quick starts’ only get you a few blocks from where you are. From there, you are on your own. Yet, typicaly, you'd want to
get to the next city. This starter kit shall be as minimal as possible, yet packed as much power as possible.

So you are busy and always on the go. You do not wish to spend alot of time studying the library. You wish to be spared the details
for later when you need it. For now, all you need to do isto get up to speed as quickly as possible and start using the library. If this
isthe case, thisistheright place to start.

This chapter is by no means a thorough discourse of the library. For more information on Phoenix, please take some time to read
the rest of the User's Guide. Yet, if you just want to use the library quickly, now, this chapter will probably suffice. Rather than

taking you to the details of the library, we shall try to provide you with annotated exemplars instead. Hopefully, this will get you
into high gear quickly.

Functors everywhere

Phoenix is built on function objects (functors). The functor is the main building block. We compose functors to build more complex
functors... to build more complex functors... and so on. Almost everything is a functor.

S Note
Functorsare so ubiquitousin Phoenix that, in the manual, thewords "functor" and "function" are used interchangeably.

Values

Values are functions! Examples:

val (3)
val ("Hel l o, World")

The first evaluates to a nullary function (a function taking no arguments) that returns ani nt , 3. The second evaluates to a nullary
function that returnsachar const (& [13],"Hello, World".

Lazy Evaluation

Confused? val (3) is a unary function, you say? Yes it is. However, read carefully: "evaluates to a nullary function". val (3)
evaluates to (returns) a nullary function. Ahal val (3) returns afunction! So, sinceval (3) returns a function, you can invoke it.
Example:

cout << val (3)() << endl;

(See values.cpp)

Learn more about values here.

The second function call (the one with no arguments) callsthe nullary function which then returns 3. The need for asecond function
call isthereason why the function issaid to be L azily Evaluated. Thefirst call doesn't do anything. You need asecond call to finally
evaluate the thing. Thefirst call lazily evaluates the function; i.e. doesn't do anything and defers the evaluation for later.

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/phoenix/doc/html/../../example/users_manual/values.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Phoenix 2.0

Callbacks

It may not be immediately apparent how lazy evaluation can be useful by just looking at the example above. Putting the first and
second function call inasinglelineisreally not very useful. However, thinking of val (3) asacallback function (and in most cases
they are actually used that way), will make it clear. Example:

tenpl ate <typenane F>
void print(F f)

{
cout << f() << endl;
}
i nt
mai n()
{
print(val(3));
print(val ("Hello World"));
return O;
}

(See callback.cpp)
References
References are functions. They hold areference to a value stored somewhere. For example, given:

int i = 3;
char const* s = "Hello Worl d";

we creater ef erences toi and s thisway:

ref(i)
ref(s)

Likeval , the expressions above evaluates to anullary function; the first onereturning ani nt &, and the second onereturning achar
const *&.

(See references.cpp)

Learn more about references here.

Arguments

Arguments are also functions?You bet!

Until now, we have been dealing with expressions returning a nullary function. Arguments, on the other hand, evaluate to an N-ary
function. An argument represents the Nth argument. There are afew predefined arguments argl, arg2, arg3, arg4 and so on (and it's
BLL counterparts: _1, 2, 3, 4 and soon). Examples:

argl // one-or-nore argunent function that returns its first argument
arg2 // two-or-nore argunent function that returns its second argunent
arg3 // three-or-nore argunment function that returns its third argunent

ar gNreturns the Nth argument. Examples:

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/phoenix/doc/html/../../example/users_manual/callback.cpp
http://www.boost.org/doc/libs/release/libs/spirit/phoenix/doc/html/../../example/users_manual/references.cpp
http://www.boost.org/libs/lambda/doc/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

int i =3
char const* s = "Hello World"
cout << argl(i) << endl; /'l prints 3
cout << arg2(i, s) << endl; /1l prints "Hello World"
(See arguments.cpp)
L earn more about arguments here.
Composites

What we have seen so far, are what are called primitives. You can think of primitives (such as values, references and arguments)
as atoms.

Things start to get interesting when we start composing primitives to form composites. The composites can, in turn, be composed
to form even more complex composites.

Lazy Operators

You can use the usual set of operators to form composites. Examples:

argl * argl

ref(x) = argl + ref(z)

argl = arg2 + (3 * arg3)

ref(x) = argl[arg2] // assuming argl is indexable and arg2 is a valid index

Note the expression: 3 * ar g3. Thisexpression is actually a short-hand equivalent to: val (3) * ar g3. In most cases, like above,
you can get away with it. But in some cases, you will have to explicitly wrap your valuesin val . Rules of thumb:

* Inabinary expression (e.g. 3 * ar g3), at least one of the operands must be a phoenix primitive or composite.
* Inaunary expression (e.g. ar g1++), the single operand must be a phoenix primitive or composite.

If these basic rules are not followed, the result is either in error, or isimmediately evaluated. Some examples:

ref(x) = 123 /'l lazy

x = 123 /1 i mredi at e

ref(x)[0] /'l 1azy

x[0] /1 i mredi at e

ref(x)[ref(i)] [/ lazy

ref(x)[i] /'l lazy (equivalent to ref(x)[val (i)])

x[ref(i)] /1 illegal (x is not a phoenix prinitive or conposite)
ref(x[ref(i)]) // illegal (x is not a phoenix prinmtive or conposite)

L earn more about operators here.

First Practical Example

We've covered enough ground to present areal world example. We want to find the first odd number in an STL container. Normally
we use a functor (function object) or afunction pointer and passthat into STL'sfi nd_i f generic function:

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/phoenix/doc/html/../../example/users_manual/arguments.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Phoenix 2.0

Write afunction:

bool
is_odd(int argl)
{
return argl %2 ==
}

Pass a pointer to the function to STL'sfi nd_i f agorithm:
find_if(c.begin(), c.end(), & s_odd)

Using Phoenix, the same can be achieved directly with a one-liner:
find_if(c.begin(), c.end(), argl %2 == 1)

Theexpressionar gl % 2 == 1 auto-magically createsafunctor with the expected behavior. In FP, this unnamed function is called
alambdafunction. Unlike the function pointer version, which ismonomorphic (expects and works only with afixed typeint argument),
the Phoenix version is fully polymorphic and works with any container (of ints, of longs, of bignum, etc.) as long as its elements
canhandletheargl % 2 == 1 expression.

(Seefind_if.cpp)

...That'sit, we're done. Well if you wish to know alittle bit more, read on...

Lazy Statements

Lazy statements? Sure. There are lazy versions of the C++ statements we all know and love. For example:

if_(argl > 5)
cout << argl

Say, for example, we wish to print all the elements that are greater than 5 (separated by a comma) in a vector. Here's how we write
it:
for_each(v.begin(), v.end(),
if_(argl > 5)
[

]

cout << argl << "

(Seeif.cpp)

Learn more about statements here.

Construct, New, Delete, Casts

You'll probably want to work with objects. There are lazy versions of constructor cals, new, del et e and the suite of C++ casts.
Examples:

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/phoenix/doc/html/../../example/users_manual/find_if.cpp
http://www.boost.org/doc/libs/release/libs/spirit/phoenix/doc/html/../../example/users_manual/if.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Phoenix 2.0

construct<std::string>(argl, arg2) // constructs a std::string fromargl, arg2

new _<std::string>(argl, arg2) /1 makes a new std::string fromargl, arg2
del ete_(argl) /1 deletes argl (assuned to be a pointer)
static_cast_<int*>(argl) /1 static_cast's argl to an int*

S Note
Take note that, by convention, names that conflict with C++ reserved words are appended with a single trailing
underscore' '

Learn more about this here.

Lazy Functions

As you write more lambda functions, you'll notice certain patterns that you wish to refactor as reusable functions. When you reach
that point, you'll wish that ordinary functions can co-exist with phoenix functions. Unfortunately, the immediate nature of plain C++
functions make them incompatible.

Lazy functions are your friends. The library provides a facility to make lazy functions. The code below is arewrite of thei s_odd
function using the facility:

struct is_odd_inpl

{
tenpl ate <typenane Arg>
struct result
{
t ypedef bool type;
b
tenpl ate <typenane Arg>
bool operator()(Arg argl) const
{
return argl %2 == 1;
}
b

function<is_odd_i nmpl > i s_odd;

Things to note:

* resul t isanested metafunction that reflects the return type of the function (in this case, bool). This makes the function fully
polymorphic: It can work with arbitrary Ar g types.

* Thereareasmany Argsinther esul t metafunction asin the actual oper at or () .
e is_odd_i npl implements the function.
* is_odd, aninstanceof f uncti on<i s_odd_i npl >, isthe lazy function.

Now, i s_odd isatruly lazy function that we can use in conjunction with the rest of phoenix. Example:
find_if(c.begin(), c.end(), is_odd(argl));

(See function.cpp)

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/phoenix/doc/html/../../example/users_manual/function.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

Predefined Lazy Functions

Thelibrary ischock full of STL savvy, predefined lazy functions covering the whole of the STL containers, iterators and algorithms.
For example, there arelazy versions of container related operations such as assign, at, back, begin, pop_back, pop_front, push_back,
push_front, etc. (See Container).

More

Asmentioned earlier, this chapter is not athorough discourse of the library. It is meant only to cover enough ground to get you into
high gear as quickly as possible. Some advanced stuff is not discussed here (e.g. Scopes); nor are features that provide alternative
(short-hand) ways to do the same things (e.g. Bind vs. Lazy Functions).

...If you still wish to learn more, theread on...

10

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Phoenix 2.0

Basics

Almost everything is afunction in the Phoenix library that can be evaluated asf (al, a2, ..., a/n/),wherenisthefunction's
arity, or number of arguments that the function expects. Operators are also functions. For example, a + b isjust a function with
arity == 2 (or binary). a + bisthesameasadd(a, b),a + b + cisthesameasadd(add(a, b), c).

S Note
Amusingly, functions may even return functions. We shall see what this means in a short while.

Partial Function Application

Think of afunction asablack box. You pass arguments and it returns something back. The figure below depictsthe typical scenario.

args

result

A fully evaluated function is one in which all the arguments are given. All functionsin plain C++ are fully evaluated. When you call
thesi n(x) function, you haveto pass anumber x. The function will return aresult in return: the sin of x. When you call theadd(x,

y) function, you have to pass two numbers x and y. The function will return the sum of the two numbers. The figure below isafully
evaluated add function.

2,3
9

A partialy applied function, on the other hand, is one in which not all the arguments are supplied. If we are able to partially apply
the function add above, we may pass only the first argument. In doing so, the function does not have all the required information it
needs to perform its task to compute and return a result. What it returns instead is another function, a lambda function --another
black box. Unlike the original add function which has an arity of 2, the resulting |lambda function has an arity of 1. Why? because
we aready supplied part of the input: 2

2

Now, when we shove in anumber into our lambdafunction, it will return 2 pluswhatever we passin. The lambda function essentialy
remembers 1) the original function, add, and 2) the partial input, 2. Thefigure below illustrates a case where we pass 3 to our lambda
function, which then returns 5:

3

11

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Phoenix 2.0

Obvioudly, partialy applying the add function, as we see above, cannot be done directly in C++ where we are expected to supply
all the arguments that a function expects. That's where the Phoenix library comesin. The library provides the facilities to do partial
function application.

STL and higher order functions

So, what's all the fuss? What makes partial function application so useful? Recall our original example in the previous section:
find_if(c.begin(), c.end(), argl %2 == 1)

Theexpressionargl % 2 == 1 evaluatesto alambdafunction. ar g1 isaplaceholder for an argument to be supplied later. Hence,
sincethere's only one unsupplied argument, the lambdafunction hasan arity 1. It just so happensthat f i nd_i f suppliesthe unsupplied
argument as it loops from c. begi n() toc. end().

E Note
Higher order functions are functions which can take other functions as arguments, and may also return functions as
results. Higher order functions are functions that are treated like any other objects and can be used as arguments
and return values from functions.

Lazy Evaluation

In Phoenix, to put it more accurately, function evaluation has two stages:
1. Partial application
2. Fina evaluation

The first stage is handled by a set of generator functions. These are your front ends (in the client's perspective). These generators
create (through partia function application), higher order functions that can be passed on just like any other function pointer or
function object. The second stage, the actual function call, can be invoked or executed anytime in the future, or not at all; hence

"lazy".

If we look more closely, the first step involves partial function application:
argl % 2 ==

The second step isthe actual function invocation (doneinsidethef i nd_i f function. These are the back-ends (often, the final invoc-
ation is never actually seen by the client). In our example, thefi nd_i f , if wetake alook inside, we'll see something like:

tenpl ate <class Inputlterator, class Predicate>
I nput I terator
find_if(Inputlterator first, Inputliterator |last, Predicate pred)

{
while (first !'=last && !pred(*first)) [// <--- The lanbda function is called here
++first; /1 passing in *first
return first;
}

Again, typically, we, as clients, see only the first step. However, in this document and in the examples and tests provided, don't be
surprised to see thefirst and second steps juxtaposed in order to illustrate the compl ete semantics of Phoenix expressions. Examples:

12

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Phoenix 2.0

int x = 1;
inty = 2;
cout << (argl %2 == 1)(x) << endl; // prints 1 or true
cout << (argl %2 == 1)(y) << endl; // prints 0 or false

Forwarding Function Problem
Usually, we, asclients, write the call-back functionswhilelibraries (such as STL) providethecallee (e.g.fi nd_i f). In casetherole

isreversed, e.g. if you haveto write an STL algorithm that takesin a predicate, or develop a GUI library that accepts event handlers,
you have to be aware of alittle known problem in C++ called the "Forwarding Function Problem™.

L ook again at the code above:
(argl % 2 == 1)(x)

Notice that, in the second-stage (the final evaluation), we used avariable x. Be aware that the second stage cannot accept non-const
temporaries and literal constants. Hence, thiswill fail:

(argl %2 == 1)(123) // FError!
Disallowing non-const rvalues partially solves the "Forwarding Function Problem” but prohibits code like above.

Polymorphic Functions

Unless otherwise noted, Phoenix generated functions are fully polymorphic. For instance, theadd example above can apply to integers,
floating points, user defined complex numbers or even strings. Example:

std::string h("Hello");
char const* w =" World";
std::string r = add(argl, arg2)(h, w;

evaluatestostd: : string("Hell o Worl d") . Theobservant reader might noticethat thisfunction call in fact takesin heterogeneous
argumentswherear g1 isof typest d: : st ri ng andar g2 isof typechar const *. add still worksbecausethe C++ standard library
allowstheexpressiona + b whereaisastd::stringandbisachar const*.

13

httpo://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1385.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1385.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

Organization

Care and attention to detail was given, painstakingly, to the design and implementation of Phoenix.

Thelibrary is organized in four layers:

Intrinsic Algorithm
Function Operator Statement Object Scope Bind
Primitives Composite
Actor

The modules are orthogonal, with no cyclic dependencies. Lower layers do not depend on higher layers. Modulesin alayer do not
depend on other modules in the same layer. This means, for example, that Bind can be completely discarded if it is not required; or
one could perhaps take out Operator and Statement and just use Function, which may be desirable in a pure FP application.

Thelibrary has grown from the original Phoenix but still comprises only header files. There are no object filesto link against.

Core

The lowest two layers comprise the core.

The Act or isthe main concept behind the library. Lazy functions are abstracted as actors. There are only 2 kinds of actors:
1. Primitives

2. Composites

Primitives provide the basic building blocks of functionality within Phoenix. Composites are used to combine these primitives to-
gether to provide more powerful functionality.

Composites are composed of zero or more actors. Each actor in a composite can again be another composite.

14

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

Table 2. Modules

Module
Function
Operator
Statement

Object

Scope

Bind

Container

Algorithm

Each module is defined in a header file with the same name.

i t/ hone/ phoeni x/ cor e. hpp>
Table 3. Includes

Module
Core

Function

Operator

Statement

Object
Scope
Bind

Container

Algorithm

Description

Lazy functions support (e.g. add)
Lazy operators support (e.g. +)
Lazy statments(e.g.i f _,while_)

Lazy casts (e.g. stati c_cast_), object creation destruction
(eg.new _,delete)

Support for scopes, local variables and lambda-lambda

Lazy functions from free functions, member functions or mem-
ber variables.

Set of predefined "lazy" functions that work on STL containers
and sequences (e.g. push_back).

Set of predefined "lazy" versions of the STL algorithms (e.g.
find_if).

For example, the core module is defined in <boost/spir-

File

#i ncl ude <boost/spirit/home/ phoeni x/ core. hpp>

#i ncl ude <boost/ spirit/hone/ phoeni x/ f unc-
tion. hpp>

#i ncl ude <boost/ spirit/ hone/ phoeni x/ oper at -
or. hpp>

#i ncl ude <boost/spirit/hone/ phoeni x/ st at e-
ment . hpp>

#i ncl ude <boost/ spirit/home/ phoeni x/ obj ect. hpp>
#i ncl ude <boost/spirit/hone/ phoeni x/ scope. hpp>
#i ncl ude <boost/spirit/hone/ phoeni x/ bi nd. hpp>

#i ncl ude <boost/ spirit/hone/ phoeni x/ cont ai n-
er. hpp>

#i ncl ude <boost/spirit/hone/ phoeni x/ al -
gorithm hpp>

render

15

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

Finer grained include files are available per feature; see the succeeding sections.

16

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

Actors

The Act or isthe main concept behind the library. Actors are function objects. An actor can accept O to PHOENI X_LI M T arguments.

S Note
You can set PHCENI X_LI M T, the predefined maximum arity an actor can take. By default, PHOENI X_LI M T isset
to 10.

Phoenix suppliesanact or classtemplate whose specializations model the Act or concept. act or hasonetemplate parameter, Eval ,
that supplies the smarts to evaluate the resulting function.

tenpl ate <typenane Eval >
struct actor : Eva

{
return_type
operator()() const;
tenpl ate <typenane TO>
return_type
operator()(TO& _0) const;
tenpl ate <typenane TO, typenane T1>
return_type
operator()(TO& _0, T1& _1) const;
/...

b

The actor class accepts the arguments through a set of function call operators for 0 to PHOENI X_LI M T arities (Don't worry about
the details, for now. Note, for example, that we skimp over the detailsregarding r et ur n_t ype). The arguments are then forwarded
to the actor'sEval for evaluation.

17

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

Primitives
Actors are composed to create more complex actorsin atree-like hierarchy. The primitives are atomic entitiesthat are like the leaves

in the tree. Phoenix is extensible. New primitives can be added anytime. Right out of the box, there are only afew primitives. This
section shall deal with these preset primitives.

Arguments

#i ncl ude <boost/spirit/home/ phoeni x/ core/ argunent. hpp>
We use an instance of:

act or <ar gunent <N> >

to represent the Nth function argument. The argument placeholder acts as an imaginary data-bin where a function argument will be
placed.

Predefined Arguments

There are afew predefined instances of act or <ar gumrent <N> > named ar g1..ar gN, and its BLL counterpart _1.. N. (where N is
a predefined maximum).

Here are some sample preset definitions of ar g1..ar gN

act or <ar gunent <0> > const argl
act or <ar gunent <1> > const arg2
act or <ar gunent <2> > const arg3

argunment <0>();
argunent <1>();
argunent <2>() ;

anditsBLL _1.. Nstyle counterparts:

act or <argunent <0> > const _1
act or <argunent <1> > const _2
act or <argunent <2> > const _3

ar gument <0>() ;
ar gument <1>() ;
ar gument <2>() ;

S Note
You can set PHOENI X_ARG LI M T, the predefined maximum placeholder index. By default, PHOENI X_ARG LIM T
isset to PHOENI X_LI M T (See Actors).

User Defined Arguments

When appropriate, you can define your own ar gunment <N> names. For example:
act or<argunment<0> > x; // note zero based index

X may now be used as a parameter to alazy function:
add(x, 6)

which is equivalent to:

18

render

httpo://www.renderx.com/

http://www.boost.org/libs/lambda/doc/index.html
http://www.boost.org/libs/lambda/doc/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

add(argl, 6)

Evaluating an Argument

An argument, when evaluated, selects the Nth argument from the those passed in by the client.

For example:

char c ="A;

i nt i = 123;

const char* s = "Hello World";

cout << argl(c) << endl; /1l Get the 1st argunent: c
cout << argl(i, s) << endl; /1l Get the 1st argunent: i
cout << arg2(i, s) << endl; /1 Get the 2nd argunent: s
will print out:

A

123

Hello World

Extra Arguments

In C and C++, a function can have extra arguments that are not at al used by the function body itself. These extra arguments are
simply ignored.

Phoenix also allows extra arguments to be passed. For example, recall our original add function:
add(argl, arg2)

We know now that partially applying this function results to afunction that expects 2 arguments. However, the library is a bit more
lenient and allows the caller to supply more arguments than is actually required. Thus, add actually allows 2 or more arguments.
For instance, with:

add(argl, arg2)(x, y, z2)
the third argument z isignored. Taking this further, in-between arguments are also ignored. Example:
add(argl, arg5)(a, b, c, d, e)

Here, arguments b, ¢, and d are ignored. The function add takesin the first argument (ar g1) and the fifth argument (ar g5).

S Note
There are afew reasons why enforcing strict arity is not desirable. A case in point is the callback function. Typical
callback functions provide moreinformation than is actually needed. Lambda functions are often used as callbacks.

Values

#i ncl ude <boost/spirit/hone/ phoeni x/ core/val ue. hpp>

19

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Phoenix 2.0

Whenever we see a constant in a partially applied function, an
act or <val ue<T> >

(where T isthe type of the constant) is automatically created for us. For instance:
add(argl, 6)

Passing a second argument, 6, an act or <val ue<i nt > > isimplicitly created behind the scenes. Thisis also equivalent to:
add(argl, val (6))

val (x) generatesanact or <val ue<T> >where T isthetype of x. In most cases, there's no need to explicitly useval , but, aswe'll
see later on, there are situations where this is unavoidable.

Evaluating a Value

Like arguments, values are also actors. As such, values can be evaluated. Invoking a value gives the value's identity. Example:
cout << val (3)() << val("Hello Wrld")()

prints out "3 Hello World".

References

#i ncl ude <boost/spirit/home/ phoeni x/ core/reference. hpp>

Values are immutable constants. Attempting to modify a value will result in a compile time error. When we want the function to
modify the parameter, we use areference instead. For instance, imagine alazy function add_assi gn:

void add_assign(T& x, Ty) { x +=vy; } // pseudo code
Here, we want the first function argument, x, to be mutable. Obviously, we cannot write:
add_assign(1, 2) // error first argunment is imutable

In C++, we can passin areferenceto avariable asthefirst argument in our example above. Yet, by default, thelibrary forcesarguments
passed to partially applied functions functions to be immutable values (see Values). To achieve our intent, we use:

act or <r ef erence<T> >

Thisissimilar to act or <val ue<T> > above but instead holds a reference to avariable.

We normally don't instantiate act or <r ef er ence<T> > objects directly. Instead we use r ef . For example (wherei isani nt
variable):

add_assign(ref (i), 2)

Evaluating a Reference

References are actors. Hence, references can be evaluated. Such invocation gives the reference's identity. Example:

20

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

int i = 3;
char const* s = "Hello World";
cout << ref(i)() <<ref(s)();

prints out "3 Hello World"

Constant References

#i ncl ude <boost/spirit/hone/ phoeni x/ core/reference. hpp>

Another freefunctioncr ef (cv) may alsobeused. cr ef (cv) createsanact or <r ef er ence<T const &> > object. Thisissimilar
to act or <val ue<T> > but when the data to be passed as argument to a function is heavy and expensive to copy by value, the
cref (cv) offersalighter aternative.

Nothing
#i ncl ude <boost/spirit/home/ phoeni x/ core/ not hi ng. hpp>

Finally, the act or <nul | _act or > does nothing; (a "bum", if you will :-). There's a sole act or <nul | _act or > instance named
"nothing". This actor is actually useful in situations where we don't want to do anything. (See for_ Statement for example).

21

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Phoenix 2.0

Composite

Actors may be combined in amultitude of waysto form composites. Composites are actors that are composed of zero or more actors.
Composition ishierarchical. An element of the composite can be a primitive or again another composite. The flexibility to arbitrarily
compose hierarchical structures allows usto form intricate constructions that model complex functions, statements and expressions.

A composite is-atuple of 0..N actors. N is the predefined maximum actors a composite can take.

@ Note
You can set PHOENI X_COVPCSI TE_LI M T, the predefined maximum actors a composite can take. By default,
PHOENI X_COMPCSI TE_LI M T issetto PHOENI X_LI M T (See Actors).

As mentioned, each of the actors AO..AN can, in turn, be another composite, since a composite is itself an actor. This makes the
composite arecursive structure. The actual evaluation is handled by a composite specific eval policy.

Function

#i ncl ude <boost/spirit/home/ phoeni x/function/function. hpp>

The f unct i on class template provides a mechanism for implementing lazily evaluated functions. Syntactically, a lazy function
looks like an ordinary C/C++ function. The function call looks familiar and feels the same as ordinary C++ functions. However,
unlike ordinary functions, the actual function execution is deferred.

Unlike ordinary function pointers or functor objectsthat need to be explicitly bound through the bind function (see Bind), the argument
types of these functions are automatically lazily bound.

In order to create alazy function, we need to implement amodel of the FunctionEval concept. For afunction that takes N arguments,
amode of FunctionEval must provide:

» Anoperator () that implementsthat takes N arguments, and implements the function logic.

* A nested metafunctionresul t <A1, ... AN> that takesthe types of the N argumentsto the function and returns the result type
of the function. (Thereis a special case for function objects that accept no arguments. Such nullary functors are only required to
define atypedef r esul t _t ype that reflects the return type of itsoper at or ()).

For example, the following type implements the FunctionEval concept, in order to provide alazy factorial function:

struct factorial _inpl

{
tenpl ate <typenane Arg>

struct result

{
}s

t ypedef Arg type;

tenpl ate <typenane Arg>
Arg operator()(Arg n) const

{
}

return (n <=0) ? 1 : n * this->operator()(n-1);

(See factorial.cpp)

Having implemented thef act ori al _i npl type, we can declare and instantiate alazy f act ori al function thisway:

22

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/phoenix/doc/html/../../example/users_manual/factorial.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Phoenix 2.0

function<factorial _inpl> factorial;

Invoking alazy function such asf act ori al does not immediately execute the function object f act ori al _i npl . Instead, an actor
object is created and returned to the caller. Example:

factorial (argl)
does nothing more than return an actor. A second function call will invoke the actual factorial function. Example:

int i = 4;
cout << factorial(argl)(i);

will print out "24".

Take note that in certain cases (e.g. for function objects with state), an instance of the model of FunctionEval may be passed on to
the constructor. Example:

function<factorial _inmpl> factorial (ftor);

where ftor is an instance of factorial_impl (thisisnot necessary inthiscaseasf act ori al _i npl does not require any state).

‘& Take care though when using function objects with state because they are often copied repeatedly, and state may change
in one of the copies, rather than the original .

Operator

This facility provides a mechanism for lazily evaluating operators. Syntacticaly, a lazy operator looks and feels like an ordinary
C/IC++ infix, prefix or postfix operator. The operator application looks the same. However, unlike ordinary operators, the actual
operator execution is deferred. Samples:

argl + arg2

1 + argl * arg2
1/ -argl

argl < 150

We have seen the lazy operatorsin action (see Quick Start). Let's go back and examine them alittle bit further:
find_if(c.begin(), c.end(), argl %2 == 1)

Through operator overloading, the expressionar g1 % 2 == 1 actualy generates an actor. This actor object is passed on to STL's
find_if function. Fromtheviewpoint of STL, the compositeissimply afunction object expecting asingle argument of the containers
value_type. For each element in c, the element is passed on as an argument ar g1 to the actor (function object). The actor checks if
thisis an odd value based on the expressionar gl % 2 == 1 where argl isreplaced by the container's element.

Like lazy functions (see function), lazy operators are not immediately executed when invoked. Instead, an actor (see actors) object
is created and returned to the caller. Example:

(argl + arg2) * arg3

does nothing more than return an actor. A second function call will evaluate the actual operators. Example:

23

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

int i =4, j =5 k =6;
cout << ((argl + arg2) * arg3)(i, j, k);

will print out "54".

Operator expressions are lazily evaluated following four smple rules:

1. A binary operator, except - >* will be lazily evaluated when at least one of its operands is an actor object (see actors).
2. Unary operators are lazily evaluated if their argument is an actor object.

3. Operator - >* islazily evaluated if the left hand argument is an actor object.

4. Theresult of alazy operator isan actor object that can in turn allow the applications of rules 1 and 2.

For example, to check the following expression islazily evaluated:
-(argl + 3 + 6)

1. Followingrulel, argl + 3islazily evaluated since ar g1 isan actor (See primitives).
2. Theresult of thisar g1 + 3 expressionisan actor object, following rule 4.

3. Continuing, argl + 3 + 6 isagainlazily evaluated. Rule 2.

4. By rule4 again, theresult of argl + 3 + 6 isan actor object.

5. Asargl + 3 + 6isanactor,-(argl + 3 + 6) islazily evaluated. Rule 2.

Lazy-operator application is highly contagious. In most cases, asingle ar gN actor infects al itsimmediate neighbors within agroup
(first level or parenthesized expression).

Note that at least one operand of any operator must be avalid actor for lazy evaluation to take effect. To force lazy evaluation of an

ordinary expression, we can user ef (x), val (x) orcref (x) totransform an operand into avalid actor object (see primitives. For
example:

1 << 3; /1 I mredi ately eval uat ed
val (1) << 3; // Lazily evaluated

Supported operators
Unary operators

prefix: ~ -, 4 ++, --, & (reference), * (dereference)
postfix: ++, --

Binary operators

=, [], +=, -=, *=, /:, (y@, &=, |:, N=, <<=, >>=
+ -, N, % & |, N, << >>

= |l= < > <= >=

&& ||, ->*

24

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Phoenix 2.0

Ternary operator
if _else(c, a, b)

The ternary operator deserves special mention. Since C++ does not allow us to overload the conditional expression:c ? a : b,
theif_else pseudo function is provided for this purpose. The behavior isidentical, albeit in alazy manner.

Member pointer operator

a- >*menber _obj ect _pointer
a- >*menber _functi on_poi nter

The left hand side of the member pointer operator must be an actor returning a pointer type. The right hand side of the member
pointer operator may be either a pointer to member object or pointer to member function.

If the right hand side is a member object pointer, the result is an actor which, when evaluated, returns a reference to that member.
For example:

struct A
{

i nt nmenber;
}s

A* a = new A

(argl->*&A :menber)(a); // returns menber a->nenber

If the right hand side is a member function pointer, the result is an actor which, when invoked, calls the specified member function.
For example:

struct A

{
I

int func(int);

A* a = new A
int i =0;

(argl->*&A: :func)(arg2)(a, i); // returns a->func(i)

25

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

Table 4. Include Files

Operators File

EE A R TR A) #i ncl ude <boost/ spirit/home/ phoeni x/ oper at -
or/arithmetic. hpp>

&=, | =, "=, <<=, &, |, 1N, <<, >> #i ncl ude <boost/ spirit/home/ phoeni x/ oper at or/ bi t -
wi se. hpp>
==,1=,%,<=5,>,>= #i ncl ude <boost/ spirit/home/ phoeni x/ oper at or/ com

parison. hpp>

<<, >> #i ncl ude <boost/ spirit/ hone/ phoeni x/ oper at -
or/io. hpp>

1, &&, || #i ncl ude <boost/ spirit/hone/ phoeni x/ operator/| o-
gi cal . hpp>

&, *p, =[] #i ncl ude <boost/spirit/ hone/ phoeni x/ oper at -

or/sel f. hpp>

if_else(c, a, b) #i ncl ude <boost/spirit/home/ phoeni x/ oper at -
or/if_el se. hpp>

- > #i ncl ude <boost/spirit/hone/ phoeni x/ oper at or/ nenm
ber . hpp>

Statement

Lazy statements...

The primitives and composite building blocks presented so far are sufficiently powerful to construct quite elaborate structures. We
have presented |azy- functions and lazy-operators. How about lazy-statements? First, an appetizer:

Print all odd-numbered contents of an STL container using st d: : f or _each (all_odds.cpp):

for_each(c.begin(), c.end()
if (argl %2 == 1)
[

]

cout << argl <<

Huh? Isthat valid C++? Read on...

Yes, it isvalid C++. The sample code above is as close as you can get to the syntax of C++. This stylized C++ syntax differs from
actual C++ code. First, thei f hasatrailing underscore. Second, the block uses square brackets instead of the familiar curly braces

{}.

S Note
C++in C++?

In as much as Spirit attempts to mimic EBNF in C++, Phoenix attempts to mimic C++ in C++!!!

26

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/phoenix/doc/html/../../example/users_manual/all_odds.cpp
http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

Here are more examples with annotations. The code almost speaks for itself.

Block Statement
#i ncl ude <boost/spirit/honme/ phoeni x/ st at enent/ sequence. hpp>

Syntax:

st at ement ,
st at enent ,

st at enent

Basically, these are comma separated statements. Take note that unlike the C/C++ semicolon, the comma is a separator put in-
between statements. Thisis like Pascal's semicolon separator, rather than C/C++'s semicolon terminator. For example:

st at enent ,
st at enent ,
statenent, // ERROR!

Is an error. The last statement should not have a comma. Block statements can be grouped using the parentheses. Again, the last
statement in a group should not have atrailing comma.

st at ement
st at enment

(

st at enment
st at enent

).

st at enent

Outside the square brackets, block statements should be grouped. For example:

for_each(c.begin(), c.end(),

do_this(argl),
do_t hat (argl)

Wrapping a comma operator chain around a parentheses pair blocks the interpretation as an argument separator. The reason for the
exception for the square bracket operator is that the operator always takes exactly one argument, so it "transforms" any attempt at
multiple arguments with a comma operator chain (and spits out an error for zero arguments).

If Statement
#i ncl ude <boost/spirit/home/ phoeni x/statement/if. hpp>

We have seen thei f _ statement. The syntax is:

i f_(conditional _expression)

[
]

sequenced_st at enent s

27

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

If _else_statement

#i ncl ude <boost/spirit/hone/ phoeni x/statement/if. hpp>
The syntax is

i f_(conditional _expression)

[
]
.else_

[
]

sequenced_st at ement s

sequenced_st at ement s

Take note that el se has aleading dot and atrailing underscore: . el se_

Example: This code prints out all the elementsand appends" > 5"," == 5" or" < 5" depending on the element's actual value:

for_each(c.begin(), c.end(),
if_(argl > 5)
[

]

.else_

[

cout << argl << " > 5\n"

if_(argl == 5)
[

]

.else_

[
]

cout << argl << " == 5\n"

cout << argl << " < 5\n"

Notice how thei f _el se_ statement is nested.

switch_ statement
#i ncl ude <boost/spirit/hone/ phoeni x/ statenment/sw tch. hpp>
The syntax is:

swi tch_(integral _expression)
[

case_<integral _val ue>(sequenced_statenents),

defaul t _<integral _val ue>(sequenced_st at ement s)

A comma separated list of cases, and an optional default can be provided. Note unlike a normal switch statement, cases do not fall
through.

Example: Thiscode printsout " one”, "t wo" or "ot her val ue" depending on the element's actual value:

28

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

for_each(c.begin(), c.end()
switch_(argl)
[
case_<l>(cout << val ("one") << '\n'),
case_<2>(cout << val ("tw") << '\n'),
default_(cout << val ("other value") << '\n")

while_ Statement
#i ncl ude <boost/spirit/hone/ phoeni x/ statement/while. hpp>
The syntax is:

whi |l e_(conditional _expression)

[
]

sequenced_st at ement s

Example: This code decrements each element until it reaches zero and prints out the number at each step. A newline terminates the
printout of each value.

for_each(c. begin(), c.end(),

(
while_(argl--)

[
1

cout << val ("\n")

cout << argl << "

do_while_ Statement
#i ncl ude <boost/spirit/hone/ phoeni x/ statenment/do_while. hpp>

The syntax is:

do

[
]

.whil e_(conditional _expression)

sequenced_st at ement s

Again, take note that whi | e has aleading dot and atrailing underscore: . whi | e_

Example: This code is almost the same as the previous example above with adight twist in logic.

29

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

for_each(c.begin(), c.end(),

(
do

[

]
.while_(argl--),
cout << val ("\n")

cout << argl << "

for_ Statement
#i ncl ude <boost/spirit/hone/ phoeni x/statement/for. hpp>
The syntax is:

for_(init_statenent, conditional _expression, step_statenent)

[
]

sequenced_st at ement s

It is again very similar to the C++ for statement. Take note that the init_statement, conditional_expression and step_statement are
separated by the comma instead of the semi-colon and each must be present (i.e. for _(,,) isinvalid). Thisis a case where the
nothing actor can be useful.

Example: This code prints each element N times where N is the element's value. A newline terminates the printout of each value.

int iii;
for_each(c.begin(), c.end(),
(
for_(ref(iii) =0, ref(iii) < argl, ++ref(iii))
[

1.

cout << val ("\n")

cout << argl << "

As before, al these are lazily evaluated. The result of such statements are in fact composites that are passed on to STL's for_each
function. In the viewpoint of f or _each, what was passed is just a functor, no more, no less.

@ Note
Unlike lazy functions and lazy operators, lazy statements always return void.

try _catch_ Statement

#i ncl ude <boost/spirit/hone/ phoeni x/statement/try_catch. hpp>

The syntax is:

30

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

try_
[

]
.catch_<exception_type>()

[
]

sequenced_st at ement s

sequenced_st at ement s

.catch_all

[
]

sequenced_st at enent

Note the usual underscore after try and catch, and the extra parentheses required after the catch.

Example: The following code calls the (lazy) function f for each element, and prints messages about different exception types it
catches.

try_
[

]

.catch_<runtinme_error>()

[
]

.catch_<exception>()

[
]
.catch_all

[
]

f(argl)

cout << val ("caught runtinme error or derived\n")

cout << val ("caught exception or derived\n")

cout << val ("caught sone other type of exception\n")

throw
#i ncl ude <boost/spirit/hone/ phoeni x/ statement/throw hpp>

Asanatural companion to the try/catch support, the statement modul e provides lazy throwing and rethrowing of exceptions.

The syntax to throw an exceptioniis:
t hr ow_(excepti on_expressi on)
The syntax to rethrow an exception is:

throw ()

Example: This code extends the try/catch example, rethrowing exceptions derived from runtime_error or exception, and translating
other exception types to runtime_errors.

31

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Phoenix 2.0

try_
[

]

.catch_<runtinme_error>()

[

f(argl)

cout << val ("caught runtinme error or derived\n"),
throw ()
]

. catch_<exception>()

[

cout << val ("caught exception or derived\n"),
throw ()
]

.catch_all

[

cout << val ("caught sone other type of exception\n")
throw (runtine_error("transl ated exception"))

Object

The Object module dealswith object construction, destruction and conversion. The module provides "lazy" versions of C++'s object
constructor, new, del et e, st ati c_cast, dynani ¢_cast, const _cast andrei nterpret_cast.

Construction

L azy constructors...
#i ncl ude <boost/spirit/home/ phoeni x/ obj ect/ construct. hpp>
Lazily construct an object from an arbitrary set of arguments:
construct<T>(ctor_argl, ctor_arg2, ..., ctor_argN

where the given parameters are the parameters to the constructor of the object of type T (This implies, that type T is expected to
have a constructor with a corresponding set of parameter types.).

Example:
construct<std::string>(argl, arg2)

Constructsast d: : stri ng fromar gl andar g2.

E Note
Themaximum number of actual parametersislimited by the preprocessor constant PHOENIX _COMPOSITE_LIMIT.
Notethough, that thislimit should not be greater than PHOENIX _LIMIT. By default, PHOENI X COMPCSI TE LIM T
isset to PHOENI X_LI M T (See Actors).

New

Lazy new...

32

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

#i ncl ude <boost/spirit/hone/ phoeni x/ obj ect/ new. hpp>
Lazily construct an object, on the heap, from an arbitrary set of arguments:
new <T>(ctor_argl, ctor_arg2, ..., ctor_argN);

where the given parameters are the parameters to the constructor of the object of type T (This implies, that type T is expected to
have a constructor with a corresponding set of parameter types.).

Example:
new _<std::string>(argl, arg2) // note the spelling of new_(with trailing underscore)

Createsast d: : stri ng fromar g1 and ar g2 on the heap.

S Note
Again, the maximum number of actual parametersis limited by the preprocessor constant PHOENIX _COMPOS-
ITE_LIMIT. Seethe note above.

Delete

Lazy delete...

#i ncl ude <boost/spirit/home/ phoeni x/ obj ect/ del et e. hpp>
Lazily delete an object, from the heap:

delete_(arg);

where arg is assumed to be a pointer to an object.

Example:

del ete_<std::string>(argl) // note the spelling of delete_ (with trailing underscore)

Casts

Lazy casts...

#i ncl ude <boost/spirit/honme/ phoeni x/ obj ect/static_cast. hpp>

#i ncl ude <boost/spirit/hone/ phoeni x/ obj ect/dynam c_cast. hpp>

#i ncl ude <boost/spirit/honme/ phoeni x/ obj ect/ const _cast. hpp>

#i ncl ude <boost/spirit/honme/ phoeni x/ obj ect/reinterpret_cast. hpp>

The set of lazy C++ cast template functions provide away of lazily casting an object of a certain type to another type. The syntax
resembles the well known C++ casts. Take note however that the lazy versions have atrailing underscore.

static_cast_<T>(| anbda_expressi on)
dynani c_cast _<T>(| anbda_expr essi on)
const _cast _<T>(| anbda_expr essi on)

rei nterpret_cast_<T>(|anbda_expression)

33

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Phoenix 2.0

Example:
static_cast_<Base*>(&argl)
Static-casts the address of ar g1 to aBase*.

Scope

Up until now, the most basic ingredient is missing: creation of and accessto local variables in the stack. When recursion comes into
play, you will soon realize the need to have true local variables. It may seem that we do not need this at all since an unnamed lambda
function cannot call itself anyway; at least not directly. With some sort of arrangement, situations will arise where alambdafunction
becomesrecursive. A typical situation occurs when we store alambda function in a Boost.Function, essentially naming the unnamed
lambda

Therewill aso be situations where alambda function gets passed as an argument to another function. Thisisamore common situation.
In this case, the lambda function assumes a new scope; new arguments and possibly new local variables.

This section deals with local variables and nested lambda scopes.

Local Variables

#i ncl ude <boost/spirit/hone/ phoeni x/ scope/ |l ocal _vari abl e. hpp>
We use an instance of:
act or <l ocal _vari abl e<Key> >

to represent alocal variable. The local variable acts as an imaginary data-bin where alocal, stack based data will be placed. Key is
an arbitrary type that is used to identify the local variable. Example:

struct size_key;
actor<l ocal _vari abl e<si ze_key> > si ze;

Predefined Local Variables

There are a few predefined instances of act or <l ocal _vari abl e<Key> > named _a.._z that you can already use. To make use
of them, simply usethe namespace boost: : phoeni x: : | ocal _namnes:

usi ng namespace boost: : phoeni x: : | ocal _nanes

let

#i ncl ude <boost/spirit/honme/ phoeni x/ scope/l et. hpp>

You declare local variables using the syntax:

| et (1 ocal -decl arati ons)

[
]

| et - body

I et allows1..N local variable declarations (where N == PHOENI X_LOCAL_LI M T). Each declaration follows the form:

httpo://www.renderx.com/

http://www.boost.org/libs/function
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

| ocal -id = | anbda- expressi on

S Note
You can set PHOENI X_LOCAL_LI M T, the predefined maximum local variable declarationsin alet expression. By
default, PHOENI X_LOCAL_LI M T issetto PHOENI X_LI M T.

let(_a = 123, _b = 456)

Reference Preservation
The type of the local variable assumes the type of the lambda- expression. Type deduction is reference preserving. For example:
let(_a = argl, _b = 456)

_a assumes the type of ar g1: areference to an argument, while _b hastypei nt .

Consider this:

let(_a = argl)
[

]
(i);

cout << --_a <<’

cout << i << endl;

the output of aboveis: 00

While with this:

let(_a = val (argl))
[

]
(i);

cout << i << endl;

cout << --_a <<’

theoutput is: 01

Reference preservation is necessary because we need to have L-value access to outer lambda-scopes (especially the arguments).
argsandr ef sareL-values. val sare R-values.

35

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

Visibility

The scope and lifetimes of the local variablesis limited within the let-body. | et blocks can be nested. A local variable may hide an
outer local variable. For example:

let(x =1, _y =", Wrld")
[

/!l x hereis anint: 1

let(_x = "Hello") // hides the outer _x
[

]

cout << _x << _y // prints "Hello, Wrld"

The RHS (right hand side |lambda-expression) of each local-declaration cannot refer to any LHS local-id. At this point, the local-ids
are not in scope yet; they will only be in scope in the let-body. The code below isin error:

let(
1
_a/l Error: _ais not in scope yet

/1 _a and _b's scope starts here
/*. body .*/

However, if an outer let scopeisavailable, thiswill be searched. Since the scope of the RHS of alocal-declaration isthe outer scope
enclosing the let, the RHS of alocal-declaration can refer to alocal variable of an outer scope:

let(_a = 1)
[
| et (
—a =1
b= _al/l k. _arefers to the outer _a
)
[
/*. body .*/
]
]
lambda

#i ncl ude <boost/spirit/home/ phoeni x/ scope/ | anbda. hpp>

A lot of times, you'd want to write alazy function that accepts one or more functions (higher order functions). STL algorithms come
to mind, for example. Consider alazy version of st : : f or _each:

36

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Phoenix 2.0

struct for_each_inpl

{

tenpl ate <typenane C, typenane F>
struct result

{
I

typedef void type

tenpl ate <typenane C, typenanme F>
voi d operator()(C& c, F f) const

{
}

std::for_each(c.begin(), c.end(), f)
b

function<for_each_i npl > const for_each = for_each_inpl ()

Notice that the function accepts another function, f asan argument. The scope of thisfunction, f , islimited withintheoper at or () .
When f iscalled inside st d: : for _each, it exists in a new scope, along with new arguments and, possibly, local variables. This
new scopeisnot at all related to the outer scopes beyond the oper at or () .

Simple syntax:

| anbda

| anbda- body

Likel et , local variables may be declared, allowing 1..N local variable declarations (where N == PHOENI X_LOCAL_LI M T):

| anbda(| ocal - decl arati ons)

[
]

| anbda- body

The samerestrictions apply with regard to scope and visibility. The RHS (right hand side lambda-expression) of each local-declaration
cannot refer to any LHS local-id. The local-ids are not in scope yet; they will be in scope only in the lambda-body:

| ambda(
a

b

1
_a/l Error: _ais not in scope yet

Seel et Visibility above for more information.

Example: Using our lazy f or _each let's print all the elementsin a container:
for_each(argl, |anbdalcout << argl])

As far as the arguments are concerned (argl..argN), the scope in which the lambda-body exists is totally new. The left ar g1 refers
totheargument passedtof or _each (acontainer). Theright ar g1 refersto theargument passed by st d: : f or _each whenwefinaly
getto call operator () inourfor_each_i npl above (acontainer el ement).

Yet, we may wish to get information from outer scopes. While we do not have access to arguments in outer scopes, what we still
have is access to local variables from outer scopes. We may only be able to pass argument related information from outer | anbda
scopes through the local variables.

37

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Phoenix 2.0

S Note
Thisisacrucia difference between | et and | anbda: | et does not introduce new arguments; | anrbda does.

Another example: Using our lazy f or _each, and alazy push_back:

struct push_back_i npl
{

tenpl ate <typenane C, typenane T>
struct result

{
I

t ypedef void type;

tenpl ate <typenane C, typenanme T>
voi d operator()(C& c, T& x) const
{

}

c. push_back(x) ;
}

functi on<push_back_i npl > const push_back = push_back_i npl ();

write alambda expression that accepts:

1. a2-dimensional container (e.g. vect or <vect or <i nt > >)
2. acontainer element (e.g. i nt)

and pushes-back the element to each of thevect or <i nt >.

Solution:

for_each(argl,
| anbda(_a = arg2)
[

]

push_back(argl, _a)

Since we do not have access to the arguments of the outer scopes beyond the lambda-body, we introduce a local variable _a that
captures the second outer argument; ar g2. Hence: _a=arg2. Thislocal variable is visible inside the lambda scope.

(See lambda.cpp)
Bind

Binding isthe act of tying together a function to some arguments for deferred (lazy) evaluation. Named L azy functions require a bit
of typing. Unlike (unnamed) lambda expressions, we need to write a functor somewhere off-line, detached from the call site. If you
wish to transform a plain function, member function or member variable to alambda expression, bi nd is your friend.

S Note
Take note that binders are monomorphic. Rather than binding functions, the preferred way isto write true generic
and polymorphic lazy-functions. However, since most of the time we are dealing with adaptation of existing code,
binders get the job done faster.

38

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/phoenix/doc/html/../../example/users_manual/lambda.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

Thereis aset of overloaded bi nd template functions. Each bi nd(x) function generates a suitable binder object, a composite.
Binding Functions

#i ncl ude <boost/spirit/hone/ phoeni x/ bi nd/ bi nd_functi on. hpp>
Example, given afunction f oo:

void foo(int n)

{
}

std::cout << n << std::endl;

Here's how the function f oo may be bound:
bi nd(& oo, argl)

Thisis now afull-fledged composite that can finally be evaluated by another function call invocation. A second function call will
invoke the actual f oo function. Example:

int i = 4;
bi nd(&f oo, argl) (i)

will print out "4".
Binding Member Functions
#i ncl ude <boost/spirit/hone/ phoeni x/ bi nd/ bi nd_menber _functi on. hpp>

Binding member functions can be done similarly. A bound member function takes in a pointer or reference to an object as the first
argument. For instance, given:

struct xyz

void foo(int) const;

xyz'sf oo member function can be bound as:
bi nd(&xyz::foo, obj, argl) // obj is an xyz object

Take note that alazy-member functions expectsthefirst argument to be apointer or reference to an object. Both the object (reference
or pointer) and the arguments can be lazily bound. Examples:

Xyz obj;

bi nd(&xyz::foo, argl, arg2) /1 argl.foo(arg2)
bi nd(&xyz:: foo, obj, argl) /1 obj.foo(argl)
bi nd(&xyz: : foo, obj, 100) /1 obj.foo(100)

Binding Member Variables

#i ncl ude <boost/spirit/hone/ phoeni x/ bi nd/ bi nd_nmenber _vari abl e. hpp>

39

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Phoenix 2.0

Member variables can also be bound much like member functions. Member variables are not functions. Yet, like ther ef (x) that
acts like a nullary function returning a reference to the data, member variables, when bound, act like a unary function, taking in a
pointer or reference to an object as its argument and returning a reference to the bound member variable. For instance, given:

struct Xxyz

{
I

int v;

xyz: : v can bebound as:
bi nd(&xyz::v, obj) // obj is an xyz object

As noted, just like the bound member function, a bound member variable also expects the first (and only) argument to be a pointer
or reference to an object. The object (reference or pointer) can be lazily bound. Examples:

Xyz obj;
bi nd(&xyz: : v, argl) /'l argl.v
bi nd(&xyz::v, obj) /'l obj.v

bi nd(&xyz::v, argl)(obj) = 4 /'l obj.v =4

40

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

Container

#i ncl ude <boost/spirit/honme/ phoeni x/ contai ner. hpp>

The container module predefines a set of lazy functions that work on STL containers. These functions provide a mechanism for the
lazy evaluation of the public member functions of the STL containers. The lazy functions are thin wrappers that simply forward to
their respective counterpartsin the STL library.

Lazy functions are provided for all of the member functions of the following containers:
» deque

o list

. map

* multimap

* vector

Indeed, should your class have member functionswith the same names and signatures asthose listed bel ow, then it will automatically
be supported. To summarize, lazy functions are provided for member functions:

* assign

. a

* back

* begin

* capacity
* clear

* empty

* end

* erase
 front

» get_alocator
* insert

* key_comp
* max_size
» pop_back
* pop_front
* push_back
» push_front
* rbegin

41

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

* rend

* reserve

* resize

* size

» gplice

» value_comp

The lazy functions' names are the same as the corresponding member function. The difference is that the lazy functions are free
functions and therefore does not use the member "dot" syntax.

Table 5. Sample usage

"Normal" version "Lazy" version
nmy_vector. at (5) at (argl, 5)
my_list.size() size(argl)
my_vect or 1. swap(my_vector2) swap(argl, arg2)

Notice that member functions with names that clash with stl algorithms are absent. This will be provided in Phoenix's agorithm
module.

No support is provided here for lazy versions of oper at or +=, oper at or [] etc. Such operators are not specific to STL containers
and lazy versions can therefore be found in operators.

The following table describes the container functions and their semantics.

Arguments in brackets denote optional parameters.

42

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

Table 6. Lazy STL Container Functions

Function
assign(c, a[, b
at(c, 1)

back(c)

begi n(c)
capacity(c)

cl ear(c)
enpty(c)

end(c)

erase(c, a[, b])
front(c)

get _all ocator(c)
insert(c, a[, b
key_conp(c)
max_si ze(c)
pop_back(c)
pop_front(c)
push_back(c, d)
push_front(c, d)
pop_front(c)
rbegi n(c)
rend(c)
reserve(c, n)
resize(c, a[, b])
si ze(c)
splice(c, a[, b,

val ue_conp(c)

cl)

cl)

C,

d])

Semantics

C.

C.

assign(a[, b, c])

at (i)

. back()

. begin()

. capaci ty()
.clear ()
.enpty()

.end()
.erase(a[, b])
front()

.get _allocator()
Cinsert(a[, b, c])
. key_conmp()

. max_si ze()

. pop_back()

. pop_front ()

. push_back(d)

. push_front (d)

. pop_front ()

.1 begi n()
.rend()
.reserve(n)
.resize(a[, b])
.size()
.splice(a[, b, c, d])

. val ue_conp()

render

43

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

Algorithm

#i ncl ude <boost/spirit/honme/ phoeni x/al gorithm hpp>

The algorithm module provides wrappers for the standard algorithms in the <al gor i t hm> and <nuner i c> headers.

Thealgorithms are divided into the categoriesiteration, transformation and querying, modelling the Boost.MPL library. The different
algorithm classes can be included using the headers:

#i ncl ude <boost/spirit/home/ phoeni x/stl/algorithmiteration. hpp>
#i ncl ude <boost/spirit/home/ phoenix/stl/algorithmtransfornation. hpp>
#i ncl ude <boost/spirit/home/ phoeni x/stl/al gorithm querying. hpp>

The functions of the algorithm modul e take ranges as arguments where appropriate. Thisis different to the standard library, but easy
enough to pick up. Ranges are described in detail in the Boost.Range library.

For example, using the standard copy algorithm to copy between 2 arrays:

int array[] = {1, 2, 3};
int output|3];
std::copy(array, array + 3, output); // W have to provide iterators
/1 to both the start and end of array

The analogous code using the phoenix algorithm module is:

int array[] = {1, 2, 3};

int output|3];

copy(argl, arg2)(array, output); // Notice only 2 argunents, the end of
/] array is established automatically

The Boost.Range library provides support for standard containers, strings and arrays, and can be extended to support additional
types.

The following tables describe the different categories of algorithms, and their semantics.

Arguments in brackets denote optional parameters.

Table7. Iteration Algorithms

Function stl Semantics

for_each(r, f) for_each(begin(r), end(r), f)

accurmul ate(r, o[, f]) accumul ate(begin(r), end(r), o[, f])
44

render

httpo://www.renderx.com/

http://boost.org/libs/mpl/doc/index.html
http://boost.org/libs/range/index.html
http://boost.org/libs/range/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

Table 8. Querying Algorithms
Function
find(r, a)
find_if(r, f)

find_end(r1, r2[, f])

find first_of(rl, r2[, f])

adj acent _find(r[, f])
count (r, a)

count _if(r, f)

di stance(r)

mi smatch(r, i[, f])
equal (r, i[, f])

search(r1, r2[, f])

| ower _bound(r, a[, f])
upper _bound(r, a[, f])
equal _range(r, a[, f])
bi nary_search(r, a[, f])

includes(rl, r2[, f])

mn_elenment(r[, f])
max_el enent (r[, f])

| exi cographi cal _conpare(r1,

ref,

f1)

stl Semantics
find(begin(r), end(r), a)
find_if(begin(r), end(r), f)

find_end(begin(rl), end(r1l), begi n(r2),
end(r2)[, f])

find first_of(begin(rl), end(rl), begin(r2),
end(r2)[, f])

adj acent _find(begin(r), end(r)[, f])
count (begi n(r), end(r), a)
count _i f (begin(r), end(r), f)

di stance(begin(r), end(r))

ni smat ch(begi n(r), end(r), i[, f])
equal (begin(r), end(r), i[, f])

search(begin(rl), end(rl1), begin(r2), end(r2)[,
f1)

| ower _bound(begin(r), end(r), a[, f])
upper _bound(begi n(r), end(r), a[, f])
equal _range(begin(r), end(r), a[, f])
bi nary_search(begin(r), end(r), a[, f])

i ncl udes(begin(r1l), end(r1l), begi n(r2),
end(r2)[, f])

m n_el ement (begin(r), end(r)[, f])
max_el ement (begi n(r), end(r)[, f])

| exi cogr aphi cal _conpare(begin(rl), end(rl1), be-
gin(r2), end(r2)[, f])

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Phoenix 2.0

Table 9. Transformation Algorithms
Function
copy(r, 0)
copy_backward(r, 0)
transfornm(r, o, f)
transfornm(r, i, o, f)
replace(r, a, b)
replace_if(r, f, a)
repl ace_copy(r, o, a, b)
replace_copy_if(r, o, f, a)
fill(r, a)
fill_n(r, n, a)
generate(r, f)
generate_n(r, n, f)
renove(r, a)
renmove_i f(r, f)
renove_copy(r, o, a)
renmove_copy_if(r, o, f)
uni que(r[, f])
uni que_copy(r, o[, f])
reverse(r)
reverse_copy(r, o)
rotate(r, m
rotate_copy(r, m o)
random shuffle(r[, f])
partition(r, f)
stable_partition(r, f)
sort(r[, f])

stable_sort(r[, f])

stl Semantics

copy(begin(r), end(r), o)
copy_backwar d(begi n(r), end(r), o)
transfornm(begin(r), end(r), o, f)
transforn(begin(r), end(r), i, o, f)
repl ace(begin(r), end(r), a, b)

repl ace(begin(r), end(r), f, a)

repl ace_copy(begin(r), end(r), o, a, b)
repl ace_copy_if(begin(r), end(r), o, f, a)
fill(begin(r), end(r), a)

fill _n(begin(r), n, a)
generate(begin(r), end(r), f)
generate_n(begin(r), n, f)
remove(begin(r), end(r), a)
remove_i f (begin(r), end(r), f)
renove_copy(begin(r), end(r), o, a)
remove_copy_if (begin(r), end(r), o, f)
uni que(begin(r), end(r)[, f])

uni que_copy(begin(r), end(r), o[, f])
reverse(begin(r), end(r))
reverse_copy(begin(r), end(r), o)
rotate(begin(r), m end(r))
rotate_copy(begin(r), m end(r), o)
random shuf fl e(begi n(r), end(r), f)
partition(begin(r), end(r), f)

stabl e_partition(begin(r), end(r), f)
sort (begin(r), end(r)[, f])

stabl e_sort(begin(r), end(r)[, f])

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Phoenix 2.0

Function

partial _sort(r, ni, f])

partial _sort_copy(rl, r2[

nth_element(r, n[, f])

nmerge(rl, r2, o[, f])

i npl ace_nerge(r, n{, f]

set_union(rl, r2, of, f

set _intersection(rl, r2

set _difference(rl, r2

f1)
)
1
of, f])
of, f])

set_symetric_difference(rl, r2

push_heap(r[, f])
pop_heap(r[, f])
make_heap(r[, f])
sort_heap(r[, f])

next _pernutation(r[, f]
prev_pernutation(r[, f]
i nner_product(r, o, af
partial _sunm(r, o[, f])

adj acent _di fference(r

)
)

f1,

of

f2])

f1)

of

f1)

stl Semantics
partial _sort(begin(r), m end(r)[, f])

partial _sort_copy(begin(rl), end(rl), begin(r2),
end(r2)[, f])

nth_el ement (begin(r), n, end(r)[, f])

merge(begin(rl), end(rl), begin(r2), end(r2),
o[, f])

i npl ace_nerge(begin(r), m end(r)[, f])

set _uni on(begin(rl), end(r1l), begi n(r2),
end(r2)[, f])

set _intersection(begin(rl), end(rl), begin(r2),
end(r2)[, f])

set _difference(begin(rl), end(rl), begin(r2),
end(r2)[, f])

set _symetric_difference(begin(ril), end(r1l),
begin(r2), end(r2)[, f])

push_heap(begi n(r), end(r)[, f])
pop_heap(begin(r), end(r)[, f])
meke_heap(begin(r), end(r)[, f])
sort_heap(begin(r), end(r)[, f])

next _pernutation(begin(r), end(r)[, f])
prev_pernutation(begin(r), end(r)[, f])

i nner _product (begin(r), end(r), o[, f1, 2])
partial _sum{begin(r), end(r), o[, f])

adj acent _di fference(begin(r), end(r), o[, f])

47

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

Inside Phoenix

This chapter explainsin more detail how the library operates. The information henceforth should not be necessary to those who are
interested in just using the library. However, amicroscopic view might prove to be beneficial to moderate to advanced programmers
who wish to extend the library.

Actors In Detall

Actor Concept

The main concept isthe Act or . Actors are function objects (that can accept 0 to N arguments (where N is a predefined maximum).

S Note
You can set PHOENI X_LI M T, the predefined maximum arity an actor can take. By default, PHOENI X_LI M T isset
to 10.

actor template class

The act or template class modelsthe Act or concept:

tenpl ate <typenane Eval >
struct actor : Eval

{
typedef Eval eval _type
actor();
actor (Eval const & base);
tenpl ate <typenane TO>
explicit actor(TO const& _0)
tenpl ate <typenane TO, typenane T1>
actor(TO const& 0O, T1 const& _1)
/1l nmore constructors
typenane apply_actor<eval type, basic_environnent<> >::type
operator()() const;
tenpl ate <typenane TO>
typenane apply_actor<eval _type, basic_environment <TO0> >::type
operator()(TO& _0) const;
tenpl ate <typenane TO, typenane T1>
typenane apply_actor<eval type, basic_environnent<T0, T1> >::type
operator()(TO& _0, T1l& _1) const;
/1l function call operators
b

48

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

Table 10. Actor Concept Requirements

Expression Result/Semantics
T::eval _type The actor's Eval type

T() Default Constructor
T(base) Constructor from Eval
T(arg0, argl, ..., argN Pass through constructors
x(arg0, argl, ..., argN Function call operators

Eval Concept
The act or template class has a single template parameter, Eval , from which it derives from. While the Act or concept represents

afunction, the Eval concept represents the function body. The requirementsfor Eval areintentionally kept ssmple, to make it easy
to write models of the concept. We shall see an example in the next section.

Table 11. Eval Concept Requirements

Expression Result/Semantics

return x.eval (env) Evaluates the function (see Environment below)

T::resul t <Env>: :type The return type of eval (see Environment below)
Constructors

In addition to a default constructor and an constructor from a Eval object, there are templated (pass through) constructorsfor 1 to N
arguments (N == PHCENI X_LI M T). These constructors simply forward the arguments to the base.

S Note
Parametric Base Class Pattern

Notice that actor derives from its template argument Eval. This is the inverse of the curiously recurring template
pattern (CRTP). With the CRTP, a class, T, has a Derived template parameter that is assumed to be its subclass.
The "parametric base class pattern” (PBCP), on the other hand, inverses the inheritance and makes a class, T, the
derived class. Both CRTP and PBCP techniques have its pros and cons, which is outside the scope of this document.
CRTP should really be renamed "parametric subclass pattern (PSCP), but again, that's another story.

Function Call Operators

ThereareN function call operatorsfor 0to N arguments (N == PHOENI X_LI M T). The actor class acceptsthe arguments and forwards
the arguments to the actor's base Eval for evaluation.

49

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

S Note
Forwarding Function Problem

The function call operators cannot accept non-const temporaries and literal constants. There is a known issue with
current C++ called the "Forwarding Function Problem™. The problem is that given an arbitrary function F, using
current C++ language rules, one cannot create a forwarding function FF that transparently assumes the arguments
of F. Disallowing non-const rvalues arguments partially solves the problem but prohibits code such asf (1, 2,
3);.

Environment

On an actor function call, before calling the actor's Eval : : eval for evaluation, the actor creates an environment. Basically, the
environment packages the argumentsin atuple. The Envi r onment isaconcept, of which, thebasi ¢c_envi r onnment template class
isamodel of.

Table 12. Environment Concept Requirements

Expression Result/Semantics
x. args() The argumentsin atie (atuple of references)
T::args_type The arguments' typesin an MPL sequence
T :tie_type Thetie (tuple of references) type
Schematically:
arg0
arg1
arg2
==l base.eval{env)
I emvironment
I
argh
Other partsof thelibrary (e.g. the scope modul€) extendsthe Envi r onment concept to hold other information such aslocal variables,
etc.
apply_actor

appl y_act or isastandard MPL style metafunction that simply callstheAction'sr esul t nested metafunction:

tenpl ate <typenane Action, typenane Env>
struct apply_actor

{
I

typedef typenane Action::tenplate result<Env>::type type;

50

render

httpo://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1385.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Phoenix 2.0

After evaluating the arguments and doing some computation, the eval member function returns something back to the client. To
dothis, theforwarding function (the actor'soper at or ()) needsto know the return type of the eval member functionthat itiscalling.
For this purpose, models of Eval arerequired to provide a nested template class:

tenpl ate <typenane Env>
struct result;

This nested class provides the result type information returned by the Eval 's eval member function. The nested template class
resul t should have atypedef t ype that reflects the return type of its member function eval .

For reference, heresatypical act or: : oper at or () that accepts two arguments:

tenpl ate <typenane TO, typenane T1>
t ypename apply_actor<eval _type, basic_environnment <T0, T1> >::type
operator()(TO& _0, T1& _1) const

{
}

return eval _type::eval (basi c_environnent<TO, T1>(_0, _1));

actor_result

For reasons of symmetry to thefamily of act or : : oper at or () thereisaspecia metafunction usablefor actor result type calculation
named act or _r esul t . Thismetafunction allowsusto directly to specify thetypes of the parametersto be passedtotheact or : : op-
erator () function. Heresatypical act or _resul t that accepts two arguments:

tenpl ate <typenane Action, typenane TO, typenane T1>
struct actor_result

{

t ypedef basi c_environnment <TO, T1> env_type;
typedef typenane Action::tenplate result<env_type>: :type type;

Actor Example

Let us see avery simple prototypical example of an actor. Thisis not atoy example. Thisis actually part of the library. Remember
ther ef er ence?.

First, we have amodel of the Eval concept: ther ef er ence:

51

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

tenpl ate <typenane T>
struct reference

{

tenpl ate <typenane Env>
struct result

{
I

typedef T& type;

reference(T& arg)
ref(arg) {}

tenpl ate <typenane Env>
T& eval (Env const & const

{
}

T& ref;

return ref;

Models of Eval are never created directly and its instances never exist alone. We have to wrap it inside the act or template class
to be useful. Ther ef template function doesthisfor us:

tenpl ate <typenane T>
act or <ref erence<T> > const
ref (T& v)

{
}

return reference<T>(v);

Ther ef er ence template class conformsto the Eval concept. It has anested r esul t metafunction that reflects the return type of
itseval member function, which performs the actual function. r ef er ence<T> storesareferencetoaT. Itseval member function
simply returns the reference. It does not make use of the environment Env.

Pretty simple...

Composites In Detail

We stated before that composites are actors that are composed of zero or more actors (see Composite). This is not quite accurate.
The definition was sufficient at that point where we opted to keep things simple and not bury the reader with details which she might
not need anyway.

Actually, acomposite is amodel of the Eval concept (more on this later). At the sametime, it is also composed of 0..N (where N
is a predefined maximum) Eval instances and an eval policy. Theindividual Eval instances are stored in atuple.

S Note
In asense, the original definition of "composite”, more or less, will do just fine because Eval instances never exist
aloneand are alwayswrapped in an act or template classwhich inherits from it anyway. Theresulting actor ISAN

Eval .

S Note
You can set PHOENI X_COMPCSI TE_LI M T, the predefined maximum Eval s (actors) acomposite can take. By defaullt,
PHOENI X_COMPCSI TE_LI M T isset to PHOENI X_LI M T (See Actors).

52

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Phoenix 2.0

composite template class

tenpl ate <typenane Eval Policy, typenane Eval Tupl e>
struct conposite : Eval Tupl e

{
t ypedef Eval Tupl e base_type
typedef Eval Policy eval _policy_type;
tenpl ate <typenane Env>
struct result
{
t ypedef inpl enmentation-defined type
|
conposite();
conposite(base_type const& actors)
tenpl ate <typenanme U0>
conposite(U0 const& _0)
tenpl ate <typenane U0, typenanme Ul>
conposite(U0 const& _0, Ul const& _1)
/'l more constructors
tenpl ate <typenane Env>
typenanme resul t <Env>::type
eval (Env const & env) const;
|

EvalTuple
Eval Tupl e, holds all the Eval instances. The conposi t e template class inherits from it. In addition to a default constructor and

aconstructor from an Eval Tupl e object, there are templated (pass through) constructors for 1 to N arguments (again, where N ==
PHOENI X_COVPCSI TE_LI M T). These constructors simply forward the arguments to the Eval Tupl e base class.

EvalPolicy

The composite's eval member function callsits Eval Pol i cy'seval member function (a static member function) passing in the
environment and each of its actors, in parallel. The following diagram illustrates what's happening:

environment

evall

evall

eval2

eval(env, evall, evall, eval2, ..., evalN)
EvalFolicy

evalN

composite

53

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Phoenix 2.0

Table 13. EvalPolicy Requirements

Expression Result/Semantics
x.eval <RT>(env, eval0, evall, ..., evalN) Evaluate the composite
T: :resul t <Env, Eval 0, Eval 1, Eval 2, ..., Thereturntype of eval

Eval N>: : type

The Eval Pol i cy is expected to have a nested template classr esul t which has atypedef t ype that reflects the return type of its
member function eval . Here's atypical example of the composite's eval member function for a 2-actor composite:

tenpl ate <typenane Env>
typenane resul t<Env>::type
eval (Env const& env) const

{
typedef typenane result<Env>::type return_type;
return Eval Policy::tenplate
eval <return_type>(
env
get <O0>(*this) /1 gets the Oth el enment from Eval Tupl e
get<l>(*this)); // gets the 1lst elenment from Eval Tuple
}
Composing

Composites are never instantiated directly. Front end expression templates are used to generate the composites. Using expression
templates, we implement aDSEL (Domain Specific Embedded L anguage) that mimics native C++. You've seen this DSEL in action
in the preceding sections. It is most evident in the Statement section.

There are some facilities in the library to make composition of composites easier. We have a set of overloaded conpose functions
and an as_conposi t e metafunction. Together, these hel pers make composing a breeze. We'll provide an example of a composite
later to see why.

compose
conpose<Eval Pol i cy>(arg0, argl, arg2, ..., argN);

Given an Eval Pol i cy and some argumentsar g0...argN, returns a proper conposi t e. The arguments may or may not be phoenix
actors (primitives of composites). If not, the arguments are converted to actors appropriately. For example:

conpose<X>(3)
converts the argument 3 to an act or <val ue<i nt > >(3).
as_composite

as_conposi t e<Eval Policy, Arg0, Argl, Arg2, ..., ArgN>: :type

This is the metafunction counterpart of conpose. Given an Eval Pol i cy and some argument types Ar g0...ArgN, returns a proper
conposi t e type. For example:

as_conposite<X, int>::type

is the composite type of the conpose<X>(3) expression above.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

Composite Example

Now, let's examine an example. Again, thisis not a toy example. Thisis actualy part of the library. Remember the whi | e_ lazy
statement? Putting together everything we've learned so far, we will present it herein its entirety (verbatim):

struct while_eval

{
tenpl ate <typenane Env, typenane Cond, typenane Do>
struct result
{
typedef void type
}
tenpl ate <typenane RT, typenane Env, typenane Cond, typenane Do>
static void
eval (Env const& env, Cond& cond, Do& do)
{
whil e (cond. eval (env))
do_. eval (env);
}
}

tenpl ate <typenane Cond>
struct while_gen

{
whi | e_gen(Cond const & cond)
cond(cond) {}
tenpl ate <typenane Do>
act or <t ypenane as_conposite<while_eval, Cond, Do>::type>
operator[] (Do const& do_) const
{
return conpose<whil e_eval >(cond, do_)
}
Cond cond
¥

tenpl ate <typenane Cond>
whi | e_gen<Cond>

whil e_(Cond const & cond)
{

}

return while_gen<Cond>(cond)

whi | e_eval isan example of an Eval Pol i cy. whi | e_gen and whi | e_ are the expression template front ends. Let's break this
apart to understand what's happening. Let's start at the bottom. It's easier that way.

When you write:

whi | e_(cond)

we generate an instance of whi | e_gen<Cond>, where Cond isthetype of cond. cond can bean arbitrarily complex actor expression.
Thewhi | e_gen template class has an oper at or [] accepting another expression. If we write:

whi | e_(cond)
[

]

do_

55

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Phoenix 2.0

it will generate a proper composite with the type:
as_conposite<whi |l e_eval , Cond, Do>::type

where Cond isthetype of cond and Do isthe type of do_. Notice how we are using phoenix's composition (conpose and as_com
posi t e) mechanisms here

tenpl ate <typenanme Do>
act or <t ypenane as_conposite<while_eval, Cond, Do>::type>
operator[] (Do const& do_) const

return conpose<whil e_eval >(cond, do_);

Finally, thewhi | e_eval doesitsthing:

whil e (cond. eval (env))
do_.eval (env);

cond and do_, at this point, are instances of Eval . cond and do_ arethe Eval elements held by the composite's Eval Tupl e. env
isthe Envi r onnent .

Extending

We've shown how it isvery easy to extend phoenix by writing new primitives and composites. The modular design of Phoenix makes
it extremely extensible. We have seen that layer upon layer, the whole library is built on a solid foundation. There are only a few
simplewell designed conceptsthat arelaid out like bricks. Overall, the library is designed to be extended. Everything above the core
layer caninfact be considered just as extensionsto thelibrary. Thismodular design wasinherited from the Spirit inline parser library.

Extension is non-intrusive. And, whenever a component or module is extended, the new extension automatically becomes a first
class citizen and is automatically recognized by all modules and componentsin the library.

56

httpo://www.renderx.com/

http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Phoenix 2.0

Wrap Up

Sooner or later more FP techniques become standard practice as people find the true value of this programming discipline outside
the academy and into the mainstream. In as much as structured programming of the 70s and object oriented programming in the 80s
and generic programming in the 90s shaped our thoughts towards a more robust sense of software engineering, FP will certainly be
aparadigm that will catapult us towards more powerful software design and engineering onward into the new millennium.

L et me quote Doug Gregor of Boost.org. About functional style programming libraries:

They're gaining acceptance, but are somewhat stunted by the ubiquitousness of broken compilers. The C++ com-
munity is moving deeper into the so-called "STL- style" programming paradigm, which brings many aspects of
functional programming into the fold. Look at, for instance, the Spirit parser to see how such function objects can
be used to build Yacc-like grammars with semantic actions that can build abstract syntax trees on the fly. This
type of functional composition is gaining momentum.

Indeed. Phoenix is another attempt to introduce more FP techniques into the mainstream. Not only is it atool that will make life
easier for the programmer. In its own right, the actual design of the library itself isamodel of true C++ FPin action. Thelibrary is
designed and structured in a strict but clear and well mannered FP sense. By al means, use the library asatool. But for those who
want to learn more about FP in C++, don't stop there, | invite you to take a closer look at the design of the library itself.

So there you have it. Have fun! See you in the FP world.

57

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Phoenix 2.0

Acknowledgement

1

8.

9.

Hartmut Kaiser implemented the original lazy casts and constructors based on hisoriginal work on Spirit SE "semantic expressions’
(the precursor to Phoenix).

. Angus Leeming implemented the container functions on Phoenix-1 which | then ported to Phoenix-2.

. Daniel Wallin hel ped with the scope module, local variables, let and lambdaand the algorithms. | frequently discuss design issues

with Daniel onYahoo Messenger.

. Jaakko Jarvi. DA Lambda MAN!
. Dave Abrahams, for his constant presence, wherever, whenever.
. Aleksey Gurtovoy, DA MPL MAN!

. Doug Gregor, always a source of inspiration.

Dan Marsden, did ailmost all the work in bringing Phoenix-2 out the door.

Eric Niebler did a 2.0 pre-release review and wrote some range related code that Phoenix stole and used in the algorithms.

10 Thorsten Ottosen; Eric'srange_ex code began life as "container_algo" in the old boost sandbox, by Thorsten in 2002-2003.

11 Jeremy Siek, even prior to Thorsten, in 2001, started the "container_algo”.

12 Vladimir Prus wrote the mutating algorithms code from the Boost Wiki.

13 Daryle Walker did a 2.0 pre-release review.

58

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Phoenix 2.0

References

1. Why Functional Programming Matters, John Hughes, 1989. Available online at
http://www.math.chal mers.se/~rjmh/Papers/whyfp.html.

2. Boost.Lambdalibrary, Jaakko Jarvi, 1999-2004 Jaakko Jarvi, Gary Powell. Available online at http://www.boost.org/libs/lambdal/.

3. Functiona Programming in C++ using the FC++ Library: a short article introducing FC++, Brian McNamara and Yannis
Smaragdakis, August 2003. Available online at http://www.cc.gatech.edu/~yannis/fc++/.

4. Side-effects and partia function application in C++, Jaakko Jarvi and Gary Powell, 2001. Available online at
http://odl .iu.edu/~jajarvi/publications/papers/mpool 01.pdf.

5. Spirit Version 1.8.1, Joel de Guzman, Nov 2004. Available online at http://www.boost.org/libs/spirit/.
6. TheBoost MPL Library, Aleksey Gurtovoy and David Abrahams, 2002-2004. Available online at http://www.boost.org/libs/mpl/.

7. Generic Programming Redesign of Patterns, Proceedings of the 5th European Conference on Pattern Languages of Programs,
(EuroPLo0oP'2000) Irsee, Germany, July 2000. Available online at
http://www.col dewey.com/europl op2000/papers/geraud%2Bduret.zip.

8. A Gentle Introduction to Haskell, Paul Hudak, John Peterson and Joseph Fasel, 1999. Available online at
http://www.haskell.org/tutorial/.

9. Large scale software design, John Lackos, ISBN 0201633620, Addison-Wesley, July 1996.

10 Design Patterns, Elements of Reusable Object-Oriented Software, Erich Gamma, Richard Helm, Ral ph Jhonson, and John Vlissides,
Addison-Wesley, 1995.

11 The Forwarding Problem: Arguments Peter Dimov, Howard E. Hinnant, Dave Abrahams, September 09, 2002. Available online:
Forwarding Function Problem.

59

httpo://www.renderx.com/

http://www.math.chalmers.se/~rjmh/Papers/whyfp.html
http://www.boost.org/libs/lambda/
http://www.cc.gatech.edu/~yannis/fc++/
http://osl.iu.edu/~jajarvi/publications/papers/mpool01.pdf
http://www.boost.org/libs/spirit/
http://www.boost.org/libs/mpl/
http://www.coldewey.com/europlop2000/papers/geraud%2Bduret.zip
http://www.haskell.org/tutorial/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1385.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Phoenix 2.0
	Table of Contents
	Preface
	Introduction
	Starter Kit
	Values
	References
	Arguments
	Composites
	Lazy Operators
	Lazy Statements
	Construct, New, Delete, Casts
	Lazy Functions
	More

	Basics
	Organization
	Actors
	Primitives
	Arguments
	Values
	References
	Constant References
	Nothing

	Composite
	Function
	Operator
	Statement
	Block Statement
	if_ Statement
	if_else_ statement
	switch_ statement
	while_ Statement
	do_while_ Statement
	for_ Statement
	try_ catch_ Statement
	throw_

	Object
	Scope
	Bind

	Container
	Algorithm
	Inside Phoenix
	Actors In Detail
	Actor Example
	Composites In Detail
	Composing
	compose
	as_composite
	Composite Example

	Extending

	Wrap Up
	Acknowledgement
	References

