| v

ERLANG

Observer

Copyright © 2002-2013 Ericsson AB. All Rights Reserved.
Observer 1.3.1

June 17, 2013

Copyright © 2002-2013 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

June 17, 2013

Ericsson AB. All Rights Reserved.: Observer | 1

1.1 Observer

1 Observer User's Guide

The Observer application contains tools for tracing and investigation of distributed systems.

1.1 Observer
1.1.1 Introduction

Observer, isagraphical tool for observing the characteristics of erlang systems. Observer displays system information,
application supervisor trees, process information, ets or mnesia tables and contains a frontend for erlang tracing.

1.1.2 General

Normally observer should be run from a standalone node to minimize the impact of the system being observed.
Example:

> erl -sname observer -hidden -setcookie MyCookie -run observer

Choose which node to observe viaNodes menu. TheVi ew/ Ref resh | nt er val controlshow frequent the view
should beupdated. Therefreshinterval isset per viewer so you can have different settingsfor each viewer. Tominimize
the system impact only the active viewer is updated and the other views will be updated when activated.

Note:
Only R15B nodes can be observed.

In general the mouse buttons behaves as expected, use left click to select objects, right click to pop up a menu with
most used choices and double click to bring up information about the selected object. In most viewers with several
columns you can change sort order by left clicking on column header.

1.1.3 Applications

The Appl i cat i ons view lists application information. Select an application in the left list to display its supervisor
tree.

Trace process will add the selected process identifier to Trace Over vi ew view and the node the process
resides on will be added as well.

Trace named process will add the registered name of the process. This can be useful when tracing on several
nodes, then processes with that name will be traced on all traced nodes.

Trace process treeandTrace naned process tree will add the selected process and all processes
below, right of, ittothe Trace Over vi ewview.

2 | Ericsson AB. All Rights Reserved.: Observer

1.1 Observer

1.1.4 Processes
The Pr ocesses view lists process information. For each process the following information is presented:
Pid
The process identifier.
Reds
Thisisthe number of reductions that has been executed on the process

Memory
Thisisthe size of the processin bytes, obtained by acall to pr ocess_i nf o(Pi d, menory).

MsgQ
Thisisthe length of the message queue for the process.

Note:

Reds can be presented as accumulated values or as values since last update.

Trace Processes will add the selected process identifiers to the Trace Over vi ew view and the node the
processes reside on will be added aswell. Trace Named Processes will add the registered name of processes.
This can be useful when tracing is done on several nodes, then processes with that name will be traced on al traced
nodes.

1.1.5 Table Viewer

TheTabl e Vi ewer view liststables. By default ets tables are visible and unreadable, private ets, tables and tables
created by the OTP applications are not visible. Use Vi ew menu to view "system" ets tables, unreadable ets tables
or mnesiatables.

Double click to view the content of the table. Select table and activate Vi ew/ Tabl e | nf or nat i on menuto view
table information.

In the table viewer you can regexp search for objects, edit and del ete objects.

1.1.6 Trace Overview

TheTrace Overvi ewview handlestracing. Tracing is done by selecting which processes to be traced and how to
tracethem. Y ou can trace messages, function calls and events, where events are process rel ated events such asspawn,
exi t and severa others.

When you want to trace function calls, you also need to setupt r ace pat t er ns. Trace patterns selects the function
callsthat will betraced. The number of traced function calls can befurther reduced withmat ch speci fi cati ons.
Match specifications can also be used to trigger additional information in the trace messages.

Note:

Trace patterns only applies to the traced processes.

Processesareadded fromthe Appl i cat i ons or Pr ocesses views. A special newidentifier, meaning all processes
spawned after trace start, can be added withthe Add ' new Pr ocess button.

When adding processes, a window with trace options will pop up. The chosen options will be set for the selected
processes. Process options can be changed by right clicking on a process.

Ericsson AB. All Rights Reserved.: Observer | 3

1.2 Trace Tool Builder

Processes added by process identifierswill add the nodes these processes resides on in the node list. Additional nodes
can be added by the Add Nodes button.

If function calls are traced, trace patterns must be added by Add Trace Patt ern button. Select a module,
function(s) and a match specification. If no functions are selected, all functions in the module will be traced. A few
basic match specifications are provided in the tool, and you can provide your own match specifications. The syntax
of match specifications are described in the ERTS User's Guide. To simplify the writing of a match specification they
can also bewritten asf un/ 1 see ms_transform manual page for further information.

UsetheSt art trace buttonto start thetrace. By default trace output iswritten to anew window, tracing is stopped
when the window is closed, or with St op Tr ace button. Trace output can be changed via Opt i ons/ Qut put
menu. The trace settings, including match specifications, can be saved to, or loaded from, afile.

Moreinformation about tracing can befound in dbg and in the chapter "Match specificationsin Erlang" in ERTSUser's
Guide and the ms_transform manual page.

1.2 Trace Tool Builder
1.2.1 Introduction

The Trace Tool Builder is a base for building trace tools for single node or distributed erlang systems. It requires the
runti me_t ool s application to be available on the traced node.

The main features of the Trace Tool Builder are:

« Start tracing to file ports on several nodes with one function call.

» Write additional information to atrace information file, which is read during formatting.

« Restoring of previous configuration by maintaining a history buffer and handling configuration files.

» Some simple support for sequential tracing.

e Formatting of binary trace logs and merging of logs from multiple nodes.

Theintention of the Trace Tool Builder isto serve asabasefor tailor madetracetools, but you may useit directly from
the erlang shell (it may mimic dbg behaviour while still providing useful additions like match specification shortcuts).

The application only allows the use of file port tracer, so if you would like to use other types of trace clients you will
be better off using dbg directly instead.

1.2.2 Getting Started

Thet t b moduleistheinterface to al functionsin the Trace Tool Builder. To get started the least you need to do is
to start atracer witht t b: t racer/ 0/ 1/ 2, and set the required trace flags on the processes you want to trace with
t t b: p/ 2. Then, when the tracing is completed, you must stop the tracer witht t b: st op/ 0/ 1 and format the trace
logwithtt b: f or mat/ 1/ 2 (aslong asthereis anything to format, of course).

ttb:tracer/ 0/ 1/ 2 opens atrace port on each node that shall be traced. By default, trace messages are written
to binary files on remote nodes(the binary trace log).

ttb: p/ 2 specifieswhich processes shall betraced. Traceflagsgiveninthiscall specify what to trace on each process.
Y ou can call thisfunction several timesif you like different trace flags to be set on different processes.

If you want to trace function calls (i.e. if you havethecal | trace flag set on any of your processes), you must also
set trace patterns on the required function(s) withtt b: t p ortt b: t pl . A function is only traced if it has a trace
pattern. The trace pattern specifies how to trace the function by using match specifications. Match specifications are
described in the User's Guide for the erlang runtime systemer t s.

tthb: stop/ 0/ 1 stopstracing on al nodes, deletes al trace patterns and flushes the trace port buffer.

tthb: format/ 1/ 2 trandates the binary trace logs into something readable. By default t t b presents each trace
message as a line of text, but you can also write your own handler to make more complex interpretations of the trace

4 | Ericsson AB. All Rights Reserved.: Observer

1.2 Trace Tool Builder

information. A trace log can even be presented graphically viathe Event Tracer application. Note that if you give the
format optiontottb: st op/ 1 theformatting isautomatically done when stoppingtt b.

Example: Tracing the local node from the erlang shell

This small module is used in the example:

-module(m) .
-export([f/0]).
f() ->
receive
From when is pid(From) ->
Now = erlang:now(),
From ! {self(),Now}

end.

The following example shows the basic use of t t b from the erlang shell. Default options are used both for starting
the tracer and for formatting (the custom fetch dir is however provided). This gives a trace log named Node-ttb
in the newly-created directory, where Node is the name of the node. The default handler prints the formatted trace
messages in the shell.

(tiger@durin)47>
(tiger@durin)47>

<0.125.0>
(tiger@durin)48>
(tiger@durin)48> %% Then I start a tracer...
(tiger@durin)48> ttb:tracer().

{ok, [tiger@durin]}

(tiger@durin)49>

(tiger@durin)49> %% and activate the new process for tracing
(tiger@durin)49> %% function calls and sent messages.
(tiger@durin)49> ttb:p(Pid, [call,send]).

{ok, [{<0.125.0>, [{matched, tiger@durin,1}]}]1}
(tiger@durin)50>
tiger@durin)50>

%% First I spawn a process running my test function
Pid = spawn(m,f,[]).

)
676

Here I set a trace pattern on erlang:now/0

)
()

(tiger@durin)50>
(tiger@durin)50>
(tiger@durin)50>
(tiger@durin)50>
(tiger@durin)50>
(tiger@durin)51>

The trace pattern is a simple match spec
indicating that the return value should be
traced. Refer to the reference manual for
the full list of match spec shortcuts
available.

ttb:tp(erlang,now, return).

o® o o® o of
o® o® o° o° o°

{ok, [{matched, tiger@durin, 1}, {saved,1}]}

(tiger@durin)52>

(tiger@durin)52> %% I run my test (i.e. send a message to
(tiger@durin)52> %% my new process)

(tiger@durin)52> Pid ! self().

<0.72.0>

(tiger@durin)53>

(tiger@durin)53> %% And then I have to stop ttb in order to flush
(tiger@durin)53> %% the trace port buffer

(tiger@durin)53> ttb:stop([return, {fetch dir, "fetch"}]).
{stopped, "fetch"}

(tiger@durin)54>

(tiger@durin)54> %% Finally I format my trace log
(tiger@durin)54> ttb:format("fetch").
({<0.125.0>,{m,f,0},tiger@durin}) call erlang:now()

({<0.125.0>,{m, f,

0},tiger@durin}) returned from erlang:now/0 ->

{1631,133451,667611}

({<0.125.0>,{m, f,
{<0.125.0>,{1031,

0},tiger@durin}) <0.72.0> !
133451,667611}}

Ericsson AB. All Rights Reserved

.. Observer | 5

1.2 Trace Tool Builder

ok

Example: Build your own tool
This small example shows asimple tool for "debug tracing", i.e. tracing of function calls with return values.

-module(mydebug) .

-export([start/0,trc/1,stop/0,format/1]).

-export([print/4]).

%% Include ms_transform.hrl so that I can use dbg:fun2ms/2 to
% generate match specifications.

include lib("stdlib/include/ms transform.hrl").

%% - ---m-------- Tool API-------------

%% Star the "mydebug" tool

start() ->
%% The options specify that the binary log shall be named
%% <Node>-debug log and that the print/4 function in this

%% module shall be used as format handler

ttb:tracer(all, [{file, "debug log"}, {handler, {{?MODULE,print},0}}1),
All processes (existing and new) shall trace function calls

We want trace messages to be sorted upon format, which requires
timestamp flag. The flag is however enabled by default in ttb.
ttb:p(all,call).

o o o°
o o° o°

%%% Set trace pattern on function(s)

trc(M) when is atom(M) ->
tre({M,' "' _'H);

trc({M,F}) when is atom(M), is atom(F) ->
tre({M,F,"'_'});

trc({M,F, A}=MFA) when is atom(M), is atom(F) ->
%% This match spec shortcut specifies that return values shall
%% be traced.
MatchSpec = dbg:fun2ms(fun() -> return _trace() end),
ttb:tpl(MFA,MatchSpec) .

%%% Format a binary trace log
format(Dir) ->
ttb:format(Dir).

%%% Stop the "mydebug" tool
stop() ->
ttb:stop(return).

% Format handler
int(Out,end of trace, TI,N) ->
N;
print(Out,Trace, TI,N) ->
do print(Out,Trace,N),
N+1.

do print(Out,{trace ts,P,call,{M,F,A},Ts},N) ->
io:format (Out,
"~w: ~w, ~w:~n"
"Call P ~W:~w/~w~n"
"Arguments :~p~n~n",
[N,Ts,P,M,F,length(A),Al);
do print(Out,{trace ts,P,return from,{M,F,A},R,Ts},N) ->
io:format (Out,
"~w: ~w, ~w:~n"

6 | Ericsson AB. All Rights Reserved.: Observer

1.2 Trace Tool Builder

"Return from : ~w:~w/~w~n"
"Return value :~p~n~n",
[N,Ts,P,M,F,A,R]).

To distinguish trace logs produced with this tool from other logs, thefi | e optionisusedintracer/ 2. Thelogs
will therefore be fetched to adirectory namedt t b_upl oad_debug_| og- YYYYMVDD- HHMVBS

By using the handl er option when starting the tracer, the information about how to format the fileis stored in the
traceinformationfile(. t i). Thisisnot necessary, asit might be given at the time of formatting instead. It can however
be useful if you e.g. want to automatically format your trace logs by using the f or mat optioninttb: st op/ 1. It
also means that you don't need any knowledge of the content of a binary log to be able to format it the way it was
intended. If the handl er option is given both when starting the tracer and when formatting, the one given when
formatting is used.

Thecal | trace flag is set on al processes. This means that any function activated with thet r ¢/ 1 command will
be traced on all existing and new processes.

1.2.3 Running the Trace Tool Builder against a remote node

The Observer application might not always be available on the node that shall be traced (in the following called the
"traced node"). It is still possible to run the Trace Tool Builder from another node (in the following called the "trace
control node") aslong as

e The Observer application is available on the trace control node.
» The Runtime Tools application is available on both the trace control node and the traced node.

If the Trace Tool Builder shall be used against aremote node, it is highly recommended to start the trace control node
as hidden. This way it can connect to the traced node without the traced node "seeing” it, i.e. if the nodes() BIF
is called on the traced node, the trace control node will not show. To start a hidden node, add the - hi dden option
totheer | command, e.g.

% erl -sname trace control -hidden

Diskless node

If the traced node is diskless, t t b must be started from a trace control node with disk access, and thef i | e option
must be givento thet r acer / 2 function with thevalue{| ocal , Fil e}, eg.

(trace control@durin)1l> ttb:tracer(mynode@diskless,{file,{local,
{wrap, "mytrace"}}}).
{ok, [mynode@diskless]}

1.2.4 Additional tracing options
When setting up atrace, several features may be turned on:
e time-constrained tracing,

» overload protection,

e autoresuming.

Time-constrained tracing

Sometimes, it may be helpful to enable trace for a given period of time (i.e. to monitor a system for 24 hours or half
of asecond). This may be done by issuing additional {ti mer, Ti mer Spec} option. If Ti ner Spec hastheform

Ericsson AB. All Rights Reserved.: Observer | 7

1.2 Trace Tool Builder

of MSec, the trace is stopped after MSec milliseconds usingtt b: st op/ 0. If any additional options are provided
(Ti mer Spec = {MSec, Opts}),ttb: stop/1liscaledinsteadwith Qpt s asthearguments. Thetimer isstarted
with t t b: p/ 2, so any trace patterns should be set up before. ttb: start _trace/ 4 aways sets up al pattern
beforeinvokingt t b: p/ 2. Note that due to network and processing delays the the period of tracing is approximate.
The example below shows how to set up atrace which will be automatically stopped and formatted after 5 seconds

(tiger@durin)l>ttb:start trace([node()],
[{erlang, now,[]}],
{all, call},
[{timer, {5000, format}}]).

When tracing live systems, special care needs to be always taken not to overload a node with too heavy tracing. tt b
providesthe over | oad option to help to address the problem.

{overl oad, Msec, Mbodule, Function} instructs the ttb backend (called obser ver backend, part
of therunti me_t ool s application) to perform overload check every Msec milliseconds. If the check (namely
Modul e: Functi on(check)) returnst r ue, tracing is disabled on the selected node.

Overload protection activated on one node does not affect other nodes, where the tracing continues as normal.
ttb: st op/ 0/ 1 fetchesdatafromall clients, including everything that has been collected before overload protection
was activated. Note that changing trace details (withttb: pandttb: tp/tpl .. .) once overload protection gets
activated in one of the traced nodesis not permitted in order not to allow trace setup to be inconsi stent between nodes.

Modul e: Funct i on provided withtheover | oad option must handlethreecalls:i nit ,check andst op.init
and st op alows to perform some setup and teardown required by the check. An overload check module could |ook
like this (note that check is always called by the same process, so put and get are possible).

-module(overload) .
-export([check/1]).

check(init) ->
Pid = sophisticated module:start(),
put(pid, Pid);
check(check) ->
get(pid) ! is overloaded,
receive
Reply ->
Reply
after 5000 ->
true
end;
check(stop) ->
get(pid) ! stop.

Autoresume

It is possible that a node (probably abuggy one, hence traced) crashes. In order to automatically resume tracing on the
node as soon as it gets back, r esumne has to be used. When it is, the failing node tries to reconnect to trace control
nodeassoonasrunti me tool s isstarted. Thisimpliesthat r unt i ne_t ool s must be included in other node's
startup chain (if it isnot, one could still resume tracing by startingr unt i me_t ool s manually, i.e. by an RPC call).

In order not to loose the data that the failing node stored up to the point of crash, the control node will try to fetch it
before restarting trace. This must happen within the allowed time frame or is aborted (default is 10 seconds, can be
customized with{r esurme, MsSec}). The datafetched thisway isthen merged with all other traces.

8 | Ericsson AB. All Rights Reserved.: Observer

1.2 Trace Tool Builder

Autostart feature requires additional data to be stored on traced nodes. By default, the data is stored automatically to
thefilecalled "ttb_autostart.bin” in the traced node's cwd. Users may decide to change this behaviour (i.e. on diskless
nodes) by specifying their own module to handle autostart data storage and retrieval (tt b_aut ost art _nodul e
environment variable of r unt i ne_t ool s). Please see the tth's reference manual to see the module's API. This
exampl e shows the default handler

-module(ttb autostart).

-export([read config/0,
write config/1,
delete config/0]).

-define (AUTOSTART FILENAME, "ttb autostart.bin").

delete config() ->
file:delete(?AUTOSTART FILENAME).

read config() ->
case file:read file(?AUTOSTART FILENAME) of
{ok, Data} -> {ok, binary to term(Data)};
Error -> Error
end.

write config(Data) ->
file:write file(?AUTOSTART FILENAME, term to binary(Data)).

Remember that file trace ports buffer the data by default. If the node crashes, trace messages are not flushed to the
binary log. If the chance of failure is high, it might be a good idea to automatically flush the buffers every now and
then. Passing{ f | ush, Msec} asoneofttb:tracer/ 2 optionflushesall buffers every MSec milliseconds.

dbg mode

The {shel |, Shell Type} option alows to make tt b operation similar to dbg. Using { shel | , true}
displays all trace messagesin the shell before storing them. { shel | , onl y} additionally disables message storage
(so that the tool behaves exactly like dbg). Thisisallowed only withiptraceports({trace, {local, File}}).

Thecommandttb: tracer (dbg) isashortcut for the pure-dbg mode ({ shel I, onl y}).

1.2.5 Trace Information and the .ti File

In addition to the trace log file(s), afilewith the extension . t i iscreated when the Trace Tool Builder is started. This
isthetraceinformationfile. It isabinary file, and it contains the process information, trace flags used, the name of the
node to which it belongs and al information written with thewr i t e_t race_i nf o/ 2 function. .ti files are always
fetched with other logs when the trace is stopped.

Except for the process information, everything in the trace information file is passed on to the handler function when
formatting. The Tl parameterisalist of { Key, Val ueLi st} tuples. Thekeysf | ags, handl er,fi | e andnode
are used for information written directly by t t b.

You can add information to the trace information file by callingwri t e_t race_i nf o/ 2. Note that Val ueLi st
always will be alist, and if youcal wite_ trace_i nfo/ 2 severa times with the same Key, the Val ueLi st
will be extended with a new value each time. Example:

ttb:wite trace_info(nykey,1l) ogives the entry {nykey,[1]} in TI. Another cal,
ttb:wite trace_info(nykey, 2),changesthisentry to{nykey, [1, 2] }.

Ericsson AB. All Rights Reserved.: Observer | 9

1.2 Trace Tool Builder

1.2.6 Wrap Logs

If you want to limit the size of the trace logs, you can use wrap logs. This works aimost like a circular buffer. You
can specify the maximum number of binary logs and the maximum size of each log. t t b will create a new binary
log each time a log reaches the maximum size. When the the maximum number of logs are reached, the oldest log
is deleted before anew oneis created.

Notethat the overall size of data generated by tth may be greater than the wrap specification would suggest - if atraced
node restarts and autoresume is enabled, old wrap log is always stored and anew oneis created.

Wrap logs can be formatted one by one or all at once. See Formatting.

1.2.7 Formatting

Formatting can be done automatically when stopping t t b (see Automatically collect and format logs fromall nodes),
or explicitly by callingthet t b: f or mat / 1/ 2 function.

Formatting means to read a binary log and present it in a readable format. Y ou can use the default format handler in
t t b to present each trace message as aline of text, or write your own handler to make more complex interpretations
of the trace information. Y ou can even use the Event Tracer et to present the trace log graphically (see Presenting
trace logs with Event Tracer).

The first argument to t t b: f or mat / 1/ 2 specifies which binary log(s) to format. This is usually the name of a
directory that ttb created during log fetch. Unlessthereisthedi sabl e_sort option provided, thelogsfrom different
files are always sorted according to timestamp in traces.

The second argument tott b: f or mat/ 2 isalist of options. The out option specifies the destination where the
formatted text shall bewritten. Default destinationisst andar d_i o, but afilename can also begiven. Thehandl er
option specifies the format handler to use. If this option is not given, the handl er option given when starting the
tracer is used. If the handl er option was not given when starting the tracer either, a default handler is used, which
prints each trace message asaline of text. Thedi sabl e_sort optionindicatesthat therelogs should not be merged
according to timestamp, but processed one file after another (this might be a bit faster).

A format handler is afun taking four arguments. This fun will be called for each trace message in the binary log(s).
A simple example which only prints each trace message could be like this:

fun(Fd, Trace, TraceInfo, State) ->
io:format(Fd, "Trace: ~p~n", [Tracel),
State

end.

Fd isthefiledescriptor for the destination file, or theatom st andar d_i o. _Tr acel nf o containsinformation from
thetrace information file (see Trace Information and the .ti File). St at e isastate variable for the format handler fun.
Theinitia value of the St at e variableis given with the handler option, e.g.

ttb: format("tiger@durin-ttb", [{handler, {{Mod,Fun}, initial state}}])

AAAAAAAAAAAAA

Another format handler could be used to calculate time spent by the garbage collector:

fun(Fd,{trace ts,P,gc start, Info,StartTs}, TraceInfo,State) ->
[{P,StartTs}|State];
(Fd,{trace ts,P,gc end, Info,EndTs}, TraceInfo,State) ->
{value, {P,StartTs}} = lists:keysearch(P,1,State),

10 | Ericsson AB. All Rights Reserved.: Observer

1.2 Trace Tool Builder

Time = diff(StartTs,EndTs),
io:format("GC in process ~w: ~w milliseconds~n", [P,Time]),
State -- [{P,StartTs}]

end

A more refined version of this format handler is the function handl e_gc/ 4 inthe module nul ti trace. erl
which can be found in the sr ¢ directory of the Observer application.

The actual trace message is passed as the second argument (Tr ace). The possible values of Tr ace are:

« al trace messages described iner | ang: t r ace/ 3 documentation,
e {drop, N} ifiptracerisused (seedbg:trace_port/2),
« end_of _trace received once when al trace messages have been processed.

By giving the format handler t t b: get _et _handl er (), you can have the trace log presented graphically with
et _vi ewer inthe Event Tracer application (see Presenting trace logs with Event Tracer).

You may always decide not to format the whole trace data contained in the fetch directory, but analyze single files
instead. In order to do so, asinglefile (or list of files) have to be passed as the first argument tof or mat / 1/ 2.

Wrap logs can be formatted one by one or all in one go. To format one of the wrap logs in a set, give the exact name
of thefile. To format the whole set of wrap logs, give the name with *" instead of the wrap count. An example:

Start tracing:

(tiger@durin)1> ttb:tracer(node(),{file,{wrap,"trace"}}).
{ok, [tiger@durin]}
(tiger@durin)2> ttb:p(...)

Thiswill give aset of binary logs, like:

tiger@durin-trace.0.wrp
tiger@durin-trace.l.wrp
tiger@durin-trace.2.wrp

Format the whole set of logs:

1> ttb:format("tiger@durin-trace.*.wrp").
ok

2>

Format only the first log:

1> ttb:format("tiger@durin-trace.0.wrp").
ok

2>

To merge all wrap logs from two nodes:

Ericsson AB. All Rights Reserved.: Observer | 11

1.2 Trace Tool Builder

1> ttb:format(["tiger@durin-trace.*.wrp","lion@durin-trace.*.wrp"]).
ok
2>

Presenting trace logs with Event Tracer

For detailed information about the Event Tracer, please turn to the User's Guide and Reference Manuals for the et
application.

By giving the format handler t t b: get _et _handl er (), you can have the trace log presented graphically with
et _vi ewer inthe Event Tracer application. t t b provides a few different filters which can be selected from the
Filter menuintheet _vi ewer window. The filters are names according to the type of actors they present (i.e. what
each vertical linein the sequence diagram represent). Interaction between actorsis shown as red arrows between two
vertical lines, and activities within an actor are shown as blue text to the right of the actorsline.

The pr ocesses filter is the only filter which will show all trace messages from a trace log. Each vertica linein
the sequence diagram represents a process. Erlang messages, spawn and link/unlink are typical interactions between
processes. Function calls, scheduling and garbage collection are typical activities within a process. pr ocesses is
the defaullt filter.

Therest of thefilterswill only show function calls and function returns. All other trace message are discarded. To get
the most out of thesefilters, et _vi ewer needsto known the caller of each function and the time of return. This can
be obtained by using both thecal | andr et ur n_t o flagswhen tracing. Note that ther et ur n_t o flag only works
with local call trace, i.e. when trace patterns are set witht t b: t pl .

The same result can be obtained by using the cal | flag only and setting a match specification like this on local or
global function calls:

1> dbg: fun2ms(fun() -> return trace(),message(caller()) end).
[{' ",[1,[{return_trace}, {message,{caller}}1}]

This should however be donewith care, sincethe{r et ur n_t r ace} function inthe match specification will destroy
tail recursiveness.

Therodul es filter shows each module as avertical linein the sequence diagram. External function callg/returns are
shown as interactions between modules and internal function callg/returns are shown as activities within amodule.

The f unct i ons filter shows each function as a vertical line in the sequence diagram. A function calling itself is
shown as an activity within afunction, and all other function calls are shown as interactions between functions.

Thenods_and_procs andf uncs_and_pr ocs filters are equivalent to the nodul es and f unct i ons filters
respectively, except that each module or function can have severa vertical lines, one for each processit resides on.

In the next example, modulesf 0o and bar are used:

-module(foo).
-export([start/0,g0/0]).

start() ->
spawn (?MODULE, go, []).

go() ->
receive
stop ->
ok;
go ->

12 | Ericsson AB. All Rights Reserved.: Observer

1.2 Trace Tool Builder

bar:f1(),
go()
end.
-module(bar).
-export([f1/0,f3/0]).
fi() ->
f2(),
ok.
f2() ->
spawn (?MODULE, f3,[1) .
f3() ->
ok.

Now let's set up the trace.

(tiger@durin)1>%%First we retrieve the Pid to limit traced processes set
(tiger@durin)1>Pid = foo:start().

(tiger@durin)2>%%Now we set up tracing

(tiger@durin)2>ttb:tracer()

(tiger@durin)3>ttb:p(Pid, [call, return to, procs, set on spawn]).
(tiger@durin)4>ttb:tpl(bar, [1).

(tiger@durin)5>%%Invoke our test function and see output with et viewer
(tiger@durin)5>Pid ! go.

(tiger@durin)6>ttb:stop({format, {handler, ttb:get et handler()}}).

This shoud render aresult similar to the following:

Ericsson AB. All Rights Reserved.: Observer | 13

1.2 Trace Tool Builder

et_viewer (filter: processes)

File ¥iewer Collector Filter Help

i Freeze Detail Level

i Hide From=Tao

i Hide Unknaown

<0, 32T 0= <0331 0=

tigarddurin tigarédurin
call bar:£1/0
call bar: £2/0

apawn bar: £3/0

L.
r

raturn to bar: £1,/0
raturn to foo:gosl
axit

call bar: £3/0
raturn to undafinad

axlt

Figure 2.1: Filter: "processes"

14 | Ericsson AB. All Rights Reserved.: Observer

1.2 Trace Tool Builder

et _viewer (filter: mods_and_procs)
File ¥iewer Collector Filter Help

i Freeze Detail Level
i Hide From=Tao _
i Hide Unknaown "

foo bar bar
<0, 32T7. 0> <0, 327, 0> <0.331. 0>

tigar8durin tigar8durin tigarBdurin
I;‘Hn:.all bar:£1/0 c =

-
p

call bar: £2/0

vaturm _to bar: £1/0

raturn to fooigosl
B

zall bar: £3/0

return to unkncwn

Figure 2.2: Filter: "mods_and_procs"

Note, that wecanusett b: start _trace/ 4 function to help us here:

(tiger@durin)1>Pid = foo:start().
(tiger@durin)2>ttb:start trace([node()],
[{bar, []1}],
{Pid, [call, return_to, procs, set on spawn]}

{handler, ttb:get et handler()}).
(tiger@durin)3>Pid ! go.

(tiger@durin)4>ttb:stop(format).

Ericsson AB. All Rights Reserved.: Observer | 15

1.2 Trace Tool Builder

1.2.8 Automatically collect and format logs from all nodes

By default t t b: st op/ 1 fetches trace logs and trace information files from all nodes. The logs are stored in a new
directory named t t b_upl oad- Fi | enanme- Ti mest anp under the working directory of the trace control node.
Fetching may be disabled by providing the nof et ch optiontot t b: st op/ 1. User can specify afetch directory of
his choice passingthe{f et ch_di r, Dir} option.

If theoptionf or mat isgiventott b: st op/ 1, thetracelogs are automatically formatted after tracing is stopped.

1.2.9 History and Configuration Files

For the tracing functionality, dbg could be used instead of thet t b for setting trace flags on processes and trace

patterns for call trace, i.e. the functionsp, t p,t pl , ct p,ct pl andct pg. Thereare only two thingsadded by t t b

for these functions:

« dl callsarestored in the history buffer and can be recalled and stored in aconfiguration file. Thismakesit easy to
setup the same trace environment e.g. if you want to compare two test runs. It also reduces the amount of typing
whenusing t t b from the erlang shell;

» shortcuts are provided for the most common match specifications (in order not to force the user to use
dbg: f un2ms continually

Usel i st_hi story/ 0 to see the content of the history buffer, and r un_hi st ory/ 1 to re-execute one of the
entries.

The main purpose of the history buffer isthe possibility to create configuration files. Any function stored in the history
buffer can be written to a configuration file and used for creating a specific configuration at any time with one single
function call.

A configuration file is created or extended withwr i t e_conf i g/ 2/ 3. Configuration files are binary files and can
therefore only be read and written with functions provided by t t b.

You can write the complete content of the history buffer to a config file by caling
ttb:wite config(ConfigFile,all). And you can write selected entries from the history by calling
ttb:wite_config(ConfigFile, Nunii st), where Nunli st isalist of integers pointing out the history
entries to write. Moreover, the history buffer isalwaysdumpedtott b | ast _confi gwhenttb: stop/ 0/ 1is
called.

User defined entries can adso be written to a config file by caling the
function ttb:wite config(ConfigFile, ConfigList) where ConfigList is a Ilist of
{ Modul e, Functi on, Args}.

Any existing file Confi gFil e is deleted and a new file is created when write_config/2 is caled.
The option append can be used if you wish to add something at the end of an existing config file, eg.
ttb:wite config(ConfigFile, Wiat, [append]).

Example: History and configuration files
See the content of the history buffer

(tiger@durin)191> ttb:tracer().
{ok, [tiger@durin]}
(tiger@durin)192> ttb:p(self(),[garbage collection,call]).
{ok,{[<0.1244.0>], [garbage collection,call]}}
(tiger@durin)193> ttb:tp(ets,new,2,[]).
{ok, [{matched,1}]}
(tiger@durin)194> ttb:list history().
[{1,{ttb,tracer, [tiger@durin, []1]1}},
{2,{ttb,p, [<0.1244.0>, [garbage collection,call]]}},

16 | Ericsson AB. All Rights Reserved.: Observer

1.2 Trace Tool Builder

{3,{ttb,tp, [ets,new,2,[11}}]

Execute an entry from the history buffer:

(tiger@durin)195> ttb:ctp(ets,new,2).
{ok, [{matched,1}]}
(tiger@durin) 196> ttb:list history().
[{1,{ttb,tracer, [tiger@durin, []11}},
{2,{ttb,p, [<0.1244.0>, [garbage collection,calll]}},
{3,{ttb,tp, [ets,new,2,[11}},
{4,{ttb,ctp, [ets,new,2]}}]
(tiger@durin)197> ttb:run history(3).
ttb:tp(ets,new,2,[]) ->
{ok, [{matched,1}]}

Write the content of the history buffer to a configuration file:

(tiger@durin)198> ttb:write config("myconfig",all).
ok
(tiger@durin)199> ttb:1list config("myconfig").
[{1,{ttb,tracer,[tiger@durin,[]1]1}},
{2,{ttb,p, [<0.1244.0>, [garbage collection,call]]}},
{3,{ttb,tp, [ets,new,2,[]1]1}},
{4,{ttb,ctp, [ets,new,2]}},
{5,{ttb,tp, [ets,new,2,[]1]1}}]

Extend an existing configuration:

(tiger@durin)200> ttb:write config("myconfig", [{ttb,tp, [ets,delete,1,[]11}1,
[append]) .
ok
(tiger@durin)201> ttb:list config("myconfig").
[{1,{ttb,tracer, [tiger@durin, []1]1}},
{2,{ttb,p, [<0.1244.0>, [garbage collection,call]]}},
{3,{ttb,tp, [ets,new,2,[11}},
{4,{ttb,ctp, [ets,new,2]}},
{5,{ttb,tp, [ets,new,2,[11}},
{6,{ttb,tp, [ets,delete,1,[1]1}}]

Go back to a previous configuration after stopping Trace Tool Builder:

(tiger@durin)202> ttb:stop().

ok

(tiger@durin)203> ttb:run config("myconfig").
ttb:tracer(tiger@durin,[]) ->

{ok, [tiger@durin]}

ttb:p(<0.1244.0>, [garbage collection,call]) ->
{ok,{[<0.1244.0>], [garbage collection,call]}}

ttb:tp(ets,new,2,[]) ->
{ok, [{matched,1}]}

ttb:ctp(ets,new,2) ->
{ok, [{matched,1}]}

Ericsson AB. All Rights Reserved.: Observer | 17

1.2 Trace Tool Builder

ttb:tp(ets,new,2,[]1) ->
{ok, [{matched,1}1}

ttb:tp(ets,delete,1,[]) ->
{ok, [{matched,1}]}

ok

Write selected entries from the history buffer to a configuration file:

(tiger@durin)204> ttb:list history().
[{1,{ttb,tracer, [tiger@durin, []11}},

{2,{ttb,p, [<0.1244.0>, [garbage collection,callll}},
{3,{ttb, tp, [ets,new,2,[]]1}},

{4,{ttb,ctp, [ets,new,2]}},
{5,{ttb, tp, [ets,new,2,[]]1}},

{6,{ttb, tp, [ets,delete,1,[]1]}}]

(tiger@durin)205> ttb:write config("myconfig",[1,2,3,6]).
ok

(tiger@durin)206> ttb:list config("myconfig").
[{1,{ttb,tracer, [tiger@durin, []11}},

{2,{ttb,p, [<0.1244.0>, [garbage collection,callll}},
{3,{ttb, tp, [ets,new,2,[]]1}},

{4,{ttb, tp, [ets,delete,1,[]1]}}]

(tiger@durin)207>

1.2.10 Sequential Tracing

To learn what sequential tracing is and how it can be used, please turn to the reference manual for theseq_t r ace
moduleintheker nel application.

The support for sequential tracing provided by the Trace Tool Builder includes

e Initiation of the system tracer. Thisis automatically done when atrace port is started with
ttbh:tracer/0/1/2

» Creation of match specifications which activates sequential tracing

Starting sequential tracing requires that a tracer has been started with the ttb:tracer/ 0/ 1/ 2 function.
Sequential tracing can then either be started via a trigger function with a match specification created with
ttb:seq_trigger_ns/0/1,ordrectly by usingtheseq_t r ace modulein theker nel application.

Example: Sequential tracing

In the following example, the function dbg: get _tracer/ 0 isused astrigger for sequentia tracing:

(tiger@durin)110> ttb:tracer().

{ok, [tiger@durin]}

(tiger@durin)111> ttb:p(self(),call).

{ok,{[<0.158.0>],[calll}}

(tiger@durin)112> ttb:tp(dbg,get tracer,0,ttb:seq trigger ms(send)).
{ok, [{matched, 1}, {saved,1}]}

(tiger@durin)113> dbg:get tracer(), seq trace:reset trace().

true

(tiger@durin)114> ttb:stop(format).

({<0.158.0>, {shell,evaluator,3},tiger@durin}) call dbg:get tracer()
SeqTrace [0]: ({<0.158.0>,{shell,evaluator,3},tiger@durin})
{<0.237.0>,dbg,tiger@durin} ! {<0.158.0>,{get tracer,tiger@durin}}
[Serial: {0,1}]

18 | Ericsson AB. All Rights Reserved.: Observer

1.3 Erlang Top

SeqTrace [0]: ({<0.237.0>,dbg,tiger@durin})

{<0.158.0>, {shell,evaluator,3},tiger@durin} ! {dbg, {ok,#Port<0.222>}}
[Serial: {1,2}]

ok

(tiger@durin)116>

Starting sequential tracing with atrigger is actually more useful if the trigger function is not called directly from the
shell, but rather implicitly within alarger system. When calling afunction from the shell, itissimpler to start sequential
tracing directly, e.g.

(tiger@durin)116> ttb:tracer().

{ok, [tiger@durin]}

(tiger@durin)117> seq trace:set token(send,true), dbg:get tracer(),
seq trace:reset trace().

true

(tiger@durin)118> ttb:stop(format).

SeqTrace [0]: ({<0.158.0>,{shell,evaluator,3},tiger@durin})
{<0.246.0>,dbg, tiger@durin} ! {<0.158.0>,{get tracer,tiger@durin}}
[Serial: {0,1}]

SeqTrace [0]: ({<0.246.0>,dbg,tiger@durin})

{<0.158.0>, {shell,evaluator,3},tiger@durin} ! {dbg, {ok,#Port<0.229>}}
[Serial: {1,2}]

ok

(tiger@durin)120>

In both examples above, the seq_t race: reset _trace/ 0 resets the trace token immediately after the traced
function in order to avoid lots of trace messages due to the printouts in the erlang shell.

All functionsin the seq_t r ace module, except set _system tracer/ 1, can be used after the trace port has
been started witht t b: t racer/ 0/ 1/ 2.

1.2.11 Example: Multipurpose trace tool

Themodulerrul titrace. erl which can be found in the sr ¢ directory of the Observer application implements
asmall tool with three possible trace settings. The trace messages are written to binary files which can be formatted
with thefunctionul titrace: format/ 1/ 2.

mul titrace: debug(What)
Start calltrace on al processes and trace the given function(s). The format handler used is
mul titrace: handl e_debug/ 4 which prints each call and return. What must be anitem or alist of items
to trace, given on the format { Modul e, Functi on, Ari ty},{ Modul e, Functi on} orjust Modul e.
mul titrace: gc(Procs)
Trace garbage collection on the given process(es). The format handler usedismnul ti t race: handl e_gc/ 4
which prints start and stop and the time spent for each GC.
mul titrace: schedul e(Procs)
Trace in- and out-scheduling on the given process(es). The format handler used is
mul titrace: handl e_schedul e/ 4 which prints each in and out scheduling with process, timestamp and
current function. It also prints the total time each traced process was scheduled in.

1.3 Erlang Top
1.3.1 Introduction

Erlang Top, et op is atool for presenting information about erlang processes similar to the information presented
by t op in UNIX.

Ericsson AB. All Rights Reserved.: Observer | 19

1.3 Erlang Top

1.3.2 Output

The output from et op can be graphical or text based.
Text based it looks like this:

tiger@durin 13:40:32
Load: cpu 0 Memory: total 1997 binary 33
procs 197 processes 0 code 173
rung 135 atom 1002 ets 95
Pid Name or Initial Func Time Reds Memory MsgQ Current Function
<127.23.0> code server 0 59585 78064 0 gen_server:loop/6
<127.21.0> file server 2 0 36380 44276 0 gen server:loop/6
<127.2.0> erl prim loader 0 27962 3740 0 erl prim loader:loop
<127.9.0> kernel sup 0 6998 4676 0 gen_server:loop/6
<127.17.0> net kernel 62 6018 3136 0 gen _server:loop/6
<127.0.0> init 0 4156 4352 0 init:loop/1
<127.16.0> auth 0 1765 1264 0 gen_server:loop/6
<127.18.0> inet tcp dist:accept 0 660 1416 0 prim inet:accept0/2
<127.5.0> application controll 0 569 6756 0 gen_server:loop/6
<127.137.0> net kernel:do spawn 0 553 5840 0 dbg:do relay 1/1

And graphically it looks like this:

Erlang Top

File 0Options

tiger@durin

Load: cpu 0
procs 280
rung 71

Memor:y :

atom

total
processes

hinary

code
ets

Ng:31:23
41

193

a0

Mame or Initial Function|Time{us

Feds

Hsgl

Current Function

L0 net_kerngl 228

gen_server :loop/E

L dd11_server

gen_server:loopde

03 net_kernel:spawn_func/g

dhgsdo_relay_1/1

L0

inet_tcp_dist:do_accept/

dist_util:con_loopsd

03 erlang:applys2

iozwait_io_mon_replyd2

L shell:evaluators3

shell:eval_loop/2

L0 release_handler

gen_server :loop/E

L overload

gen_server:loopde

L0 alarm_handler

gen_ewvent:loopdd

=] =] =] =] =] =| =] =] =

L0 sas1_safe_sup

Figure 3.1: Graphical presentation of etop

The header includes some system information:
Load

=) =) =] =] =] =] =) =) =],

=] =] = =] =] =| =] =] =] =

gen_server:loop/E

cpuisRunt i ne/ Val | cl ock, i.e. the percentage of time where the node has been active, pr ocs isthe
number of processes on the node, and r unq is the number of processesthat are ready to run.

20 | Ericsson AB. All Rights Reserved.: Observer

1.3

Erlang Top

Memory
Thisisthe memory alocated by the node in kilo bytes.

For each process the following information is presented:

Time
Thisisthe runtime for the process, i.e. the actua time the process has been scheduled in.
Reds
Thisisthe number of reductions that has been executed on the process
Memory
Thisisthe size of the processin bytes, obtained by acall to pr ocess_i nf o(Pi d, nenory).
MsgQ
Thisisthe length of the message queue for the process.

Note:

Time and Reds can be presented as accumulated values or as values since last update.

1.3.3 Start

To start etop with the graphical presentation, use the script get op or the batch file get op. bat, eg. getop -

node tiger@urin

To start etop with the text based presentation use the script et op or the batch file et op. bat , eg. et op - node

tiger@urin,

1.3.4 Configuration

All configuration parameters can be set at start by adding - Opt Name Val ue to the command line, e.g. et op -

node tiger@urin -setcookie nycookie -1ines 15.

Theparametersl i nes,i nt erval ,accunul at e andsor t canbechanged during runtime. Use the Options menu

with the graphical presentation or the function et op: conf i g/ 2 with the text based presentation.
A list of all valid configuration parameters can be found in the reference manual for et op.

Note that it is even possible to change which information to sort by by clicking the header line of the table in the

graphical presentation.

Ericsson AB. All Rights Reserved.: Observer | 21

1.3 Erlang Top

Example: Change configuration with graphical presentation

Erlang Top

File

Options

7 Accumulate
Update Interval
Mumber of Lines

tigerd
Load:

ng:3z2:03
41
193

Memory: total hinary

code

sort

w

ProcCESSES
atom

ets

a0

Mame or Initial Function

Timef{us{Reds

=
o
(L]
f)

Current Function

net_kernel

237 10

gen_server :loop/E

dd11_server

(=}

gen_server:loopde

net_kernel:spawn_func/g

dhgsdo_relay_1/1

inet_tcp_dist:do_accept/

dist_util:con_loopsd

erlang:applys2

iozwait_io_mon_replyd2

shell:evaluators3

shell:eval_loop/2

release_handler

gen_server :loop/E

overload

gen_server:loopde

alarm_handler

gen_ewvent:loopdd

Figure 3.2:

File

Options

gas1_safe_sup

=] =] =] =] =] =| =] =] =
=] =] = =] =] =| =] =

Select the option to change from the Options menu.

Erdang Top

=] =] = =] =] =| =] =] =] =

gen_server:loop/E

tiger@durin

Load: cpu

procs
rung

Memor:y :

71

total
Processes
atom

2335

]
1300

hinary
code
ets

Ng:32:43

Mame or Initial Function

Time{us{Reds Memnory

=
w
(L]
f)

Current Function

Nip

net_kernel

278 2336

gen_server:loop/E

L0

net| 0

Nip

ine

L0

dd1

Nip

net]

0

er 1y

Enter numher of Tines:

1244

net_kernel:ticker_loops2

1840

dist_util:can_loopsd

4656

gen_server:loop/E

5248

dbg :do_relay_141

12810

iniwait_io_mon_reply/2

M)

cshe

1244

shell:ewal_loop/2

L0

release_handler

13108

gen_server:loop/B

M)

overload

1264

gen_server :loop/E

L0

Figure 3.3:

alarm_handler

1264

Enter the new value in the popup window and click "Ok"

22 | Ericsson AB. All Rights Reserved.: Observer

=1 = =] =| =] =] =] =] =] =

gen_event :loopsd

1.3 Erlang Top

File

Options

Erlang Top

tigerfdurin

Load: cpu

procs
rumng

0 Menory:

280
71

total 2335
processes 0
atom 1300

N8:33:24
binary 41
code 1493
etz a0

Name or Initial Function

Time{ugiReds Memnary

Hsgll Current Function

0

net_kernel

381 32 2336

0 gen_server:loop/E

Mip

inet_tecp_dist:do_accept/

374 1033 1840

dist_util:can_loopsd

0

net_kernel:ticker/2

1244

net_kernel:ticker_loops2

Mip

dd11_server

4656

gen_server :loop/E

.0

Figure 3.4:

net_kernel:spawn_func/6

5248

The interface is updated with the new configuration

dhg:do_relay_1/1

Example: Change configuration with text based presentation

tiger@durin 10:12:39
Load: cpu 0 Memory: total 1858 binary 33
procs 191 processes code 173
rung 2 atom 1002 ets 95
Pid Name or Initial Func Time Reds Memory MsgQ Current Function
<127.23.0> code_server 0 60350 71176 0 gen_server:loop/6
<127.21.0> file server 2 0 36380 44276 0 gen_server:loop/6
<127.2.0> erl prim loader 0 27962 3740 0 erl prim loader:loop
<127.17.0> net kernel 0 13808 3916 0 gen_server:loop/6
<127.9.0> kernel sup 0 6998 4676 0 gen_server:loop/6
<127.0.0> init 0 4156 4352 0 init:loop/1
<127.18.0> inet tcp dist:accept 0 2196 1416 0 prim inet:accept0/2
<127.16.0> auth 0 1893 1264 0 gen_server:loop/6
<127.43.0> ddll server 0 582 3744 0 gen_server:loop/6
<127.5.0> application controll 0 569 6756 0 gen_server:loop/6
et op: config(lines,b).
ok
(etop@durin)2>
tiger@durin 10:12:44
Load: cpu 0 Memory: total 1859 binary 33
procs 192 processes code 173
rung 2 atom 1002 ets 95
Pid Name or Initial Func Time Reds Memory MsgQ Current Function
<127.17.0> net kernel 183 70 4092 0 gen_server:loop/6
<127.335.0> inet tcp dist:do acc 141 22 1856 0 dist util:con_ loop/9
<127.19.0> net kernel:ticker/2 155 6 1244 0 net kernel:tickerl/2
<127.341.0> net kernel:do spawn 0 0 5840 0 dbg:do relay 1/1
<127.43.0> ddll server 0 0 3744 0 gen_server:loop/6

Ericsson AB. All Rights Reserved.: Observer | 23

1.4 Crashdump Viewer

1.3.5 Print to file

At any time, the current et op display can be dumped to atext file. Use Dump to file on the File menu with the
graphical presentation or the function et op: dunp/ 1 with the text based presentation.

1.3.6 Stop

To stop et op, use Exit on the File menu for the graphical presentation, or the function et op: st op/ 0 with the text
based presentation.

1.4 Crashdump Viewer

1.4.1 Introduction

The Crashdump Viewer isan HTML based tool for browsing Erlang crashdumps. Crashdump Viewer runs under the
WebTool application.

1.4.2 Getting Started

The easiest way to start Crashdump Viewer is to use the provided shell script named cdv with the full path to the
erlang crashdump as an argument. The script can be found in the priv directory of the obser ver application. This
starts WebTool, Crashdump Viewer and a web browser, and loads the given file. The browser should then display a
page named General Information which shows a short summary of the information in the crashdump.

Thedefault browser isInternet Explorer on Windows, open on Mac OS X, or el se Firefox. To use another browser, give
the browser's start command as the second argument to cdv. If the given browser name is not known to Crashdump
Viewer, the browser argument is executed as a command with the start URL as the only argument.

Under Windows the batch filecdv. bat can be used.

Itisalso possibleto start the Crashdump Viewer from within an erlang node by calling crashdump_viewer: start/0. This
will automatically start WebTool and display the web address where WebTool can be found. See the documentation
for the WebTool application for further information about how to use WebTool.

Point your web browser to the address displayed, and you should now see the start page of WebTool. At the top of
the page, you will see alink to "CrashDumpViewer". Click this link to get to the start page for Crashdump Viewer.
(Note that if webtool ison localhost, you must configure your web browser to have direct connection to the internet,
or you must set no proxy for localhost.)

From the start page of Crashdump Viewer, push the "L oad Crashdump" button to load a crashdump into the tool. Then
enter the filename of the crashdump in the entry field and push the "Ok" button. This will bring you to the General
Information page, i.e. the same page as the cdv script will open in the browser.

Crashdumps generated by OTP R9C and later are loaded directly into the Crashdump Viewer, while dumps from
earlier releases first are trandated by the Crashdump Translater. The Crashdump Translater creates a new file with
the same name as the original crashdump, but with the extension . t r ansl at ed. If there is no write access to the
directory of the original file, you will be asked to enter a new path and filename for the trandated file.

1.4.3 Navigating

Thelefthand frame contains amenu. Menu folders can be expanded and collapsed by clicking the folder picture. When
amenu itemis clicked, theitem information is shown in the big information frame.

The filename frame above the information frame shows the full name of the currently viewed Erlang crashdump.

24 | Ericsson AB. All Rights Reserved.: Observer

1.4 Crashdump Viewer

To load a new crashdump, click the "L oad New Crashdump" button in the menu frame.

The various information shown in the information frame will contain links to process identifiers (PIDs) and port
identifiers. Clicking one of theselinkswill take you to the detailed information page for the process or port in question.
Usethe"Back" button in your browser to get back to the startingpoint. If the process or port resided on aremote node,
there will be no information available. Clicking the link will then take you to the information about the remote node.

1.4.4 Help

Further help on how to use the Crashdump Viewer tool can be found in the tool's menu under '‘Documentation’:

'‘Crashdump Viewer help' is a short document describing each information page and any additional information that
might occur, compared to the raw dump described in 'How to interpret Erlang crashdumps.

'How to interpret Erlang crashdumps' is a document from the Erlang runtime system describing details in the raw
crashdumps. Here you will aso find information about each single field in the different information pages. This
document can a'so be found directly in the OTP online documentation, via the Erlang runtime system user's guide.

Ericsson AB. All Rights Reserved.: Observer | 25

1.4 Crashdump Viewer

2 Reference Manual

The Observer application contains tools for tracing and investigation of distributed systems.

26 | Ericsson AB. All Rights Reserved.: Observer

observer

observer
Application

This chapter describes the OBSERVER application in OTP, which provides tools for tracing and investigation of
distributed systems.

Configuration

There are currently no configuration parameters available for this application.

SEE ALSO

Ericsson AB. All Rights Reserved.: Observer | 27

observer

observer

Erlang module

The observer is gui frontend containing various tools to inspect a system. It displays system information, application
structures, process information, ets or mnesiatables and a frontend for tracing with ttb.

See the user's guide for more information about how to get started.

Exports

start() -> ok
Thisfunction startsthe obser ver gui. Close the window to stop the application.

28 | Ericsson AB. All Rights Reserved.: Observer

tth

ttb

Erlang module

The Trace Tool Builder t t b isabase for building trace tools for distributed systems.
Whenusing t t b, dbg shall not be used in parallel.

Exports

start_trace(Nodes, Patterns, FlagSpec, Opts) -> Result
Types:

Result = see p/2

Nodes = see tracer/2

Patterns = [tuple()]

Fl agSpec = {Procs, Fl ags}

Proc = see p/2

Fl ags = see p/2

Opts = see tracer/2

This function is a shortcut allowing to start a trace with one command. Each tuplein Pat t er ns is converted to list
whichisinturnpassedtottb: t pl . Thecal:

ttb:start trace([Node, OtherNodel],

[{mod, foo, []}, {mod, bar, 2}],

{all, call},

[{file, File}, {handler,{fun myhandler/4, S}}1)

is equivalent to

ttb:start trace([Node, OtherNode], [{file, File}, {handler,{fun myhandler/4, S}}1),
ttb:tpl(mod, foo, [1),

ttb:tpl(mod, bar, 2, [1),

ttb:p(all, call)

tracer() -> Result
Thisisequivalenttot racer (node()).

tracer(Shortcut) -> Result
Types:
Shortcut = shell | dbg
shel | isequivalenttotracer (node(),[{file, {local, "ttb"}}, shell]).

dbg isequivaenttot racer (node(), [{shell, only}]).

Ericsson AB. All Rights Reserved.: Observer | 29

tth

tracer(Nodes) -> Result
Thisisequivalenttot racer (Nodes, []) .

tracer(Nodes,Opts) -> Result

Types.
Result = {ok, ActivatedNodes} | {error, Reason}
Nodes = aton() | [aton()] | all | existing | new

Opts = Opt | [Opt]

Ot = {file,dient} | {handler, FormatHandler} | {process _info,Pl} | shell
| {shell, ShellSpec} | {tinmer, TinerSpec} | {overload, {Msec, Module,
Function}} | {flush, Msec} | resunme | {resune, FetchTi meout}

Ti mer Spec = Msec | {Msec, StopOpts}
MSec = FetchTi meout = integer()
Modul e = Function = atom()

StopOpts = see stop/2

Cient = File | {local, File}

File = Filenane | Wap

Fil ename = string()

Wap = {wap, Filenane} | {wrap, Fil enane, Si ze, Count }
For mat Handl er = See format/2

Pl =true | false

Shel | Spec = true | false | only

This function starts a file trace port on all given nodes and also points the system tracer for sequentia tracing to the
same port.

Thegiven Fi | enane will be prefixed with the node name. Default Fi | enane is"tth".

Fi | e={wrap, Fi | enane, Si ze, Count } can beused if the size of the tracelogs must be limited. Default values
areSi ze=128*1024 and Count =8.

When tracing disklessnodes, t t b must be started from an external "trace control node" with disk access,and C i ent
must be{l ocal , Fil e}.All traceinformation isthen sent to the trace control node where it is written to file.

Theprocess_i nf o option indicates if processinformation should be collected. If PI = t r ue (whichisdefault),
each process identifier Pi d is replaced by atuple { Pi d, Processl nf o, Node}, where Pr ocessl nf o is the
process registered name its globally registered name, or itsinitial function. It is possible to turn off this functionality
by setting Pl = fal se.

The{shel |, Shel | Spec} option indicates that the trace messages should be printed on the console as they are
received by the tracing process. Thisimplies{| ocal , Fi |l e} trace client. If the ShellSpec isonl y (instead of
t r ue), no trace logs are stored.

Theshel | optionisashortcut for { shel |, true}.

Thet i mer option indicates that the trace should be automatically stopped after MSec milliseconds. St opQOpt s are
passedtott b: st op/ 2 command if specified (default is[]). Note that the timing is approximate, as delays related
to network communication are always present. Thetimer startsaftert t b: p/ 2 isissued, so you can set up your trace
patterns before.

Theover | oad option allowsto enable overload checking on the nodesunder trace. Modul e: Funct i on(check)
is performed each MSec milliseconds. If the check returnst r ue, the tracing is disabled on a given node.

30 | Ericsson AB. All Rights Reserved.: Observer

tth

Modul e: Funct i on should be ableto handle at least three atoms: i ni t , check andst op.i nit andst op give
the user apossibility to initialize and clean up the check environment.

When a node gets overloaded, it is not possibleto issuet t b: p nor any command from the t t b: t p family, as it
would lead to inconsistent tracing state (different trace specifications on different node).

Thef | ush option periodically flushesall filetrace port clients(seedbg: f | ush_trace_port/ 1). When enabled,
the buffers are freed each MSec milliseconds. Thisoptionisnot allowedwith{fil e, {l ocal, Fil e}} tracing.

{resune, FetchTi neout} enablesthe autoresumefeature. Whenever enabled, remote nodestry to reconnect to
the controlling node in case they were restarted. The feature requiresr unt i me_t ool s application to be started (so
it hasto be present inthe . boot scriptsif the traced nodes run with embedded erlang). If thisis not possible, resume
may be performed manually by startingr unt i ne_t ool s remotely usingr pc: cal | / 4.
ttb tries to fetch al logs from a reconnecting node before reinitializing the trace. This has to finish within
FetchTimeout milliseconds or is aborted
By default, autostart information isstored in afilecalledt t b_aut ost art . bi n on each node. If thisisnot desired
(i.e. on diskless nodes), a custom module to handle autostart information storage and retrieval can be provided by
specifying t t b_aut ost art _nodul e environment variable for the r unt i me_t ool s application. The module
has to respond to the following API:
write config(Data) -> ok
Storethe provided datafor further retrieval. It isimportant to realize that the data storage used must not be affected
by the node crash.
read_config() -> {ok, Data} | {error, Error}
Retrieve configuration stored withwri t e_confi g(Dat a) .
delete config() -> ok
Delete configuration stored with wri t e_confi g(Dat a) . Note that after this call any subsequent calls to
read_configmustreturn{error, Error}.

Ther esune option impliesthe default Fet chTi meout , which is 10 seconds

p(Procs,Flags) -> Return

Types:
Return = {ok, [{Procs, MatchDesc}]}
Procs = Process | [Process] | all | new | existing

Process = pid() | aton() | {global,atom)}
Flags = Flag | [Fl ag]

This function sets the given trace flags on the given processes. Thet i nest anp flag is always turned on.

Please turn to the Reference manua for module dbg for details about the possible trace flags. The parameter
Mat chDesc isthe same asreturned from dbg: p/ 2

Processes can be given as registered names, globally registered names or process identifiers. If aregistered nameis
given, the flags are set on processes with this name on all active nodes.

Issuing this command starts the timer for thistraceif t i mer option was specified witht r acer/ 2.

tp, tpl, ctp, ctpl, ctpg

These functions should be used in combination with thecal | traceflag for setting and clearing trace patterns. When
thecal | traceflagisset onaprocess, function callswill betraced on that processif atrace pattern has been set for the
called function. Trace patterns specifies how to trace a function by using match specifications. Match specifications
are described in the User's Guide for the erlang runtime systemert s.

Ericsson AB. All Rights Reserved.: Observer | 31

tth

These functions are equivalent to the corresponding functionsin dbg, but all callsare stored inthe history. The history
buffer makes it easy to create config files so that the same trace environment can be setup several times, e.g. if you
want to compare two test runs. It also reduces the amount of typing when using t t b from the erlang shell.

‘P Set trace pattern on global function calls

P Set trace pattern on local and global function calls
e Clear trace pattern on local and global function calls
! pIClear trace pattern on local function calls

ctpg
Clear trace pattern on global function calls

Witht p andt pl oneof match specification shortcuts may beused (example:t t b: t p(f oo_nodul e, cal l er)).
The shortcuts are:

return-for[{" _',[],[{return_trace}]}] (reportthereturnvaue)

caller -for[{" _'",[],[{nessage, {caller}}]}] (reportthe calling function)

{codestr, Str} - for dbg: fun2ns/ 1 arguments passed as strings (example: "fun(_) ->
return_trace() end")

list history() -> History
Types:
History = [{N, Func, Args}]

All callstot t b isstored in the history. This function returns the current content of the history. Any entry can be re-
executed with r un_hi st ory/ 1 or stored in aconfig filewithwri t e_confi g/ 2/ 3.

run_history(N) -> ok | {error, Reason}
Types:
N =integer() | [integer()]
Executes the given entry or entries from the history list. History can belisted with | i st _hi st ory/ 0.

write config(ConfigFile,Config)
Equivalenttowr it e_confi g(ConfigFile, Config,[]).

write config(ConfigFile,Config,0Opts) -> ok | {error,Reason}
Types:
ConfigFile = string()

Config = all | [integer()] | [{Mod, Func, Args}]
Mod = atom()

Func = atom()

Args = [tern()]

Opts = Opt | [Opt]

Opt = append

This function creates or extends a config file which can be used for restoring a specific configuration later.

The content of the config file can either be fetched from the history or given directly asalist of { Mod, Func, Ar gs}.

32 | Ericsson AB. All Rights Reserved.: Observer

tth

If the complete history is to be stored in the config file Conf i g should beal | . If only a selected number of entries
from the history should be stored, Conf i g should be alist of integers pointing out the entries to be stored.

If Opt s isnot given or if itis[], Confi gFi | e is deleted and a new file is created. If Opts = [append],
Conf i gFi | e will not be deleted. The new information will be appended at the end of thefile.

run_config(ConfigFile) -> ok | {error,Reason}
Types.
ConfigFile = string()
Executes all entriesin the given config file. Note that the history of the last trace is ways available in the file named
ttb_last_config.

run_config(ConfigFile,NumList) -> ok | {error,Reason}
Types:
ConfigFile = string()
Nunmli st = [integer()]
Executes selected entries from the given config file. NunLi st is a list of integers pointing out the entries to be
executed.

The content of a config file can belisted with| i st _confi g/ 1.
Note that the history of the last traceis always availablein thefilenamedt t b_| ast _confi g.

list config(ConfigFile) -> Config | {error,Reason}
Types:

ConfigFile = string()

Config = [{N, Func, Args}]
Listsall entriesin the given config file.

write trace info(Key,Info) -> ok
Types.

Key = term()
Info = Data | fun() -> Data
Data = term))

The. ti filecontains{ Key, Val uelLi st} tuples. Thisfunction adds Dat a to the ValuelL ist associated with Key.
All information written with this function will be included in the call to the format handler.

seq_trigger ms() -> MatchSpec
Equivaenttoseq_trigger_ns(all)

seq_trigger ms(Flags) -> MatchSpec

Types:
Mat chSpec = mat ch_spec()
Flags = all | SeqTraceFl ag | [SeqTraceFl ag]

SeqTraceFl ag = atom()

Ericsson AB. All Rights Reserved.: Observer | 33

tth

A match specification can turn on or off sequential tracing. This function returns a match specification which turns
on sequential tracing with the given Fl ags.

This match specification can be given as the last argument to t p or t pl . The activated | t emwill then become a
trigger for sequential tracing. Thismeansthat if theitemiscalled on aprocesswiththecal | traceflag set, the process
will be "contaminated" with the seq_trace token.

If Fl ags = al |, all possible flags are set.

Please turn to the reference manual for theseq_t r ace moduleintheker nel application to seethe possible values
for SeqTr aceFl ag. For a description of the match_spec() syntax, please turn to the User's guide for the runtime
system (erts). The chapter Match Specification in Erlang explains the general match specification "language”.

Note:

The system tracer for sequentia tracing is automatically initiated by t t b when a trace port is started with
ttb:tracer/0/ 1/ 2.

Example of how tousetheseq_tri gger _ns/ 0/ 1 function:

(tiger@durin)5> ttb:tracer().

{ok, [tiger@durin]}

(tiger@durin)6> ttb:p(all,call).

{ok,{[all],[call]l}}

(tiger@durin)7> ttb:tp(mod, func,ttb:seq trigger ms()).
{ok, [{matched, 1}, {saved,1}]}

(tiger@durin)8>

Whenever nod: func(. . .) iscaled after this, the seq_trace token will be set on the executing process.

stop()
Equivalenttost op([]) .

stop(Opts) -> stopped | {stopped, Dir}

Types:
Opts = Opt | [Opt]
Opt = nofetch | {fetch_dir, Dir} | format | {format, FornatQpts} |
return_fetch_dir

Dir = string()

Format Opts = see format/2
Stops tracing on al nodes. Logs and trace information files are sent to the trace control node and stored in adirectory
named ttb_upl oad_Fi | eNanme- Ti nest anp, where Fi | enane is the one provided with {file, File}
during trace setup and Ti nmest anp isof theformyyyynmndd- hhmss. Even logs from nodes on the same machine
as the trace control node are moved to this directory. The history list issaved to afilenamedttb | ast _confi g

for further reference (asit will be not longer accessible through history and configuration management functions (like
ttb:list_history/0).

The nof et ch option indicates that trace logs shall not be collected after tracing is stopped.

The{fetch, Dir} optionalows to specify the directory to fetch the data to. If the directory already exists, an
error isthrown.

34 | Ericsson AB. All Rights Reserved.: Observer

tth

The f or mat option indicates that the trace logs shall be formatted after tracing is stopped. All logs in the fetch
directory will be merged. You may use{ f or nat, For nat Qpt s} to pass additiona argumentsto f or nat / 2.

Thereturn_fetch_dir option indicates that the return value should be { st opped, Dir} and not just
st opped. Thisimpliesf et ch.

get et handler()

The et handler returned by the function may be used with format/2 or tracer/2. Example
ttb:format(Dir, [{handler, ttb:get et _handler()}]).

format(File)
Sameasformat (File,[]).

format(File,Options) -> ok | {error, Reason}
Types:
File = string() | [string()]
This can be the name of abinary log, alist of such logs or the name of a directory containing one or more
binary logs.
Options = Opt | [Opt]
Opt {out,Qut} | {handl er, Format Handl er} | di sable_sort
Qut standard_io | string()
For mat Handl er = {Function, Initial State}
Function = fun(Fd, Trace, Tracel nfo, State) -> State
Fd = standard_io | FileDescriptor
Thisisthefile descriptor of the destination file Qut
Trace = tuple()
Thisisthe trace message. Please turn to the Reference manual for the er | angmodule for details.
Tracel nfo = [{Key, Val uelLi st}]

Thisincludesthe keysf | ags, cl i ent and node, and if handl er isgiven as option to the tracer function,
thisisalso included. In addition all information written withthewri t e_t race_i nf o/ 2function isincluded.

Readsthe given binary tracelog(s). Thelogs are processed in the order of their timestamp aslongasdi sabl e_sort
option is not given.

If Format Handl er = {Function,Initial State}, Functi on will be called for each trace message.
If Format Handl er = get_et _handl er (), et _vi ewer in the Event Tracer application (et) is used for
presenting the trace log graphically. t t b provides afew different filters which can be selected from the Filter menu
intheet _vi ewer . If For mat Handl er isnot given, adefault handler is used which presents each trace message
asaline of text.

The state returned from each call of Funct i on is passed to the next call, even if next call isto format a message
from another log file.

If Qut isgiven, For mat Handl er getsthe file descriptor to Qut asthe first parameter.
Qut isignoredif et format handler is used.

Wrap logs can be formatted one by one or all in one go. To format one of the wrap logs in a set, give the exact name
of the file. To format the whole set of wrap logs, give the name with *' instead of the wrap count. See examplesin
thet t b User's Guide.

Ericsson AB. All Rights Reserved.: Observer | 35

etop

etop

Erlang module

et op should be started with the provided scripts et op and get op for text based and graphical presentation
respectively. This will start a hidden erlang node which connects to the node to be measured. The measured node is
given with the - node option. If the measured node has a different cookie than the default cookie for the user who
invokes the script, the cookie must be explicitly given witht the - set cooki e option.

Under Windows the batch fileset op. bat and get op. bat can be used.

The following configuration parameters exist for the et op tool. When executing the et op or get op scripts, these
parameters can be given as command line options, e.g. get op - node testnode@ryhost -setcookie
My Cooki e.

node
The measured node.
Value: atom()
Mandatory
setcookie
Cookie to use for the etop node - must be the same as the cookie on the measured node.
Value: atom()
lines
Number of lines (processes) to display.
Value: integer()
Default: 10
interval
Thetime interval (in seconds) between each update of the display.
Value: integer()
Default: 5
accumul ate
If t r ue the execution time and reductions are accumul ated.
Value: boolean()
Default: f al se
sort
I dentifies what information to sort by.
Vaueruntime | reductions | nenory | msg_gQ
Default: runt i ne (r educti ons if t raci ng=of f)
tracing
et op usesthe erlang trace facility, and thus no other tracing is possible on the measured node while et op is
running, unless this option is set to of f . Also helpful if the et op tracing causes too high load on the measured
node. With tracing off, runtime is not measured.
Vaue on | off
Default: on

All interaction with et op when running the graphical presentation should happen via the menus. For the text based
presentation the functions described below can be used.

See the user's guide for more information about the et op tool.

36 | Ericsson AB. All Rights Reserved.: Observer

etop

Exports

start() -> ok
Thisfunction starts et op. Note that etop is preferably started with the etop and getop scripts

start(Options) -> ok
Types:
Options = [Option]
Option = {Key, Val ue}
Key = atom()
Value = term()
This function starts et op. Use help/0 to see a description of the possible options.

help() -> ok
This function prints the help of et op and its options.

config(Key,Value) -> Result

Types:
Result = ok | {error, Reason}
Key = lines | interval | accunulate | sort

Value = term))

This function is used to change the tool's configuration parameters during runtime. The table above indicates the
allowed values for each parameter.

dump(File) -> Result

Types:
Result = ok | {error, Reason}
File = string()

This function dumps the current display to atext file.

stop() -> stop
This function terminates et op.

Ericsson AB. All Rights Reserved.: Observer | 37

crashdump_viewer

crashdump_viewer

Erlang module

The Crashdump Viewer isan HTML based tool for browsing Erlang crashdumps. Crashdump Viewer runs under the
WebTool application.

See the user's guide for more information about how to get started with the Crashdump Viewer.

Exports

start() -> ok
Thisfunction startsthecr ashdunp_vi ewer .

stop() -> ok

This function stopsthe cr ashdunp_vi ewer .

38 | Ericsson AB. All Rights Reserved.: Observer

	Observer
	Observer User's Guide
	Observer
	Introduction
	General
	Applications
	Processes
	Table Viewer
	Trace Overview

	Trace Tool Builder
	Introduction
	Getting Started
	Example: Tracing the local node from the erlang shell
	Example: Build your own tool

	Running the Trace Tool Builder against a remote node
	Diskless node

	Additional tracing options
	Time-constrained tracing
	Autoresume
	dbg mode

	Trace Information and the .ti File
	Wrap Logs
	Formatting
	Presenting trace logs with Event Tracer

	Automatically collect and format logs from all nodes
	History and Configuration Files
	Example: History and configuration files

	Sequential Tracing
	Example: Sequential tracing

	Example: Multipurpose trace tool

	Erlang Top
	Introduction
	Output
	Start
	Configuration
	Example: Change configuration with graphical presentation
	Example: Change configuration with text based presentation

	Print to file
	Stop

	Crashdump Viewer
	Introduction
	Getting Started
	Navigating
	Help

	Reference Manual
	observer
	observer
	start/0

	ttb
	start_trace/4
	tracer/0
	tracer/1
	tracer/1
	tracer/2
	p/2
	/0
	list_history/0
	run_history/1
	write_config/2
	write_config/3
	run_config/1
	run_config/2
	list_config/1
	write_trace_info/2
	seq_trigger_ms/0
	seq_trigger_ms/1
	stop/0
	stop/1
	get_et_handler/0
	format/1
	format/2

	etop
	start/0
	start/1
	help/0
	config/2
	dump/1
	stop/0

	crashdump_viewer
	start/0
	stop/0

